Artwork

Inhalt bereitgestellt von Sean Tibor and Kelly Paredes, Sean Tibor, and Kelly Paredes. Alle Podcast-Inhalte, einschließlich Episoden, Grafiken und Podcast-Beschreibungen, werden direkt von Sean Tibor and Kelly Paredes, Sean Tibor, and Kelly Paredes oder seinem Podcast-Plattformpartner hochgeladen und bereitgestellt. Wenn Sie glauben, dass jemand Ihr urheberrechtlich geschütztes Werk ohne Ihre Erlaubnis nutzt, können Sie dem hier beschriebenen Verfahren folgen https://de.player.fm/legal.
Player FM - Podcast-App
Gehen Sie mit der App Player FM offline!

Episode 150: LLMs with Simon WIllison

1:36:27
 
Teilen
 

Manage episode 502886941 series 2771291
Inhalt bereitgestellt von Sean Tibor and Kelly Paredes, Sean Tibor, and Kelly Paredes. Alle Podcast-Inhalte, einschließlich Episoden, Grafiken und Podcast-Beschreibungen, werden direkt von Sean Tibor and Kelly Paredes, Sean Tibor, and Kelly Paredes oder seinem Podcast-Plattformpartner hochgeladen und bereitgestellt. Wenn Sie glauben, dass jemand Ihr urheberrechtlich geschütztes Werk ohne Ihre Erlaubnis nutzt, können Sie dem hier beschriebenen Verfahren folgen https://de.player.fm/legal.

In this milestone 150th episode, hosts Kelly Schuster-Paredes and Sean Tibor sit down with Simon Willison, co-creator of Django and creator of Datasette and LLM tools, for an in-depth conversation about artificial intelligence in Python education.

The discussion covers the current landscape of LLMs in coding education, from the benefits of faster iteration cycles to the risks of students losing that crucial "aha moment" when they solve problems independently. Simon shares insights on prompt injection vulnerabilities, the importance of local models for privacy, and why he believes LLMs are much harder to use effectively than most people realize.

Key topics include:

  • Educational Strategy: When to introduce AI tools vs. building foundational skills first
  • Security Concerns: Prompt injection attacks and their implications for educational tools
  • Student Engagement: Maintaining motivation and problem-solving skills in an AI world
  • Practical Applications: Using LLMs for code review, debugging, and rapid prototyping
  • Privacy Issues: Understanding data collection and training practices of major AI companies
  • Local Models: Running AI tools privately on personal devices
  • The "Jagged Frontier": Why LLMs excel at some tasks while failing at others

Simon brings 20 years of Django experience and deep expertise in both web development and AI tooling to discuss how educators can thoughtfully integrate these powerful but unpredictable tools into their classrooms. The conversation balances excitement about AI's potential with realistic assessments of its limitations and risks.

Whether you're a coding educator trying to navigate the AI revolution or a developer interested in the intersection of education and technology, this episode provides practical insights for working with LLMs responsibly and effectively.

Resources mentioned:

  • Simon's blog: simonwillison.net
  • Mission Encodable curriculum
  • Datasette and LLM tools
  • GitHub Codespaces for safe AI experimentation

Special Guest: Simon Willison.

Support Teaching Python

  continue reading

151 Episoden

Artwork

Episode 150: LLMs with Simon WIllison

Teaching Python

13 subscribers

published

iconTeilen
 
Manage episode 502886941 series 2771291
Inhalt bereitgestellt von Sean Tibor and Kelly Paredes, Sean Tibor, and Kelly Paredes. Alle Podcast-Inhalte, einschließlich Episoden, Grafiken und Podcast-Beschreibungen, werden direkt von Sean Tibor and Kelly Paredes, Sean Tibor, and Kelly Paredes oder seinem Podcast-Plattformpartner hochgeladen und bereitgestellt. Wenn Sie glauben, dass jemand Ihr urheberrechtlich geschütztes Werk ohne Ihre Erlaubnis nutzt, können Sie dem hier beschriebenen Verfahren folgen https://de.player.fm/legal.

In this milestone 150th episode, hosts Kelly Schuster-Paredes and Sean Tibor sit down with Simon Willison, co-creator of Django and creator of Datasette and LLM tools, for an in-depth conversation about artificial intelligence in Python education.

The discussion covers the current landscape of LLMs in coding education, from the benefits of faster iteration cycles to the risks of students losing that crucial "aha moment" when they solve problems independently. Simon shares insights on prompt injection vulnerabilities, the importance of local models for privacy, and why he believes LLMs are much harder to use effectively than most people realize.

Key topics include:

  • Educational Strategy: When to introduce AI tools vs. building foundational skills first
  • Security Concerns: Prompt injection attacks and their implications for educational tools
  • Student Engagement: Maintaining motivation and problem-solving skills in an AI world
  • Practical Applications: Using LLMs for code review, debugging, and rapid prototyping
  • Privacy Issues: Understanding data collection and training practices of major AI companies
  • Local Models: Running AI tools privately on personal devices
  • The "Jagged Frontier": Why LLMs excel at some tasks while failing at others

Simon brings 20 years of Django experience and deep expertise in both web development and AI tooling to discuss how educators can thoughtfully integrate these powerful but unpredictable tools into their classrooms. The conversation balances excitement about AI's potential with realistic assessments of its limitations and risks.

Whether you're a coding educator trying to navigate the AI revolution or a developer interested in the intersection of education and technology, this episode provides practical insights for working with LLMs responsibly and effectively.

Resources mentioned:

  • Simon's blog: simonwillison.net
  • Mission Encodable curriculum
  • Datasette and LLM tools
  • GitHub Codespaces for safe AI experimentation

Special Guest: Simon Willison.

Support Teaching Python

  continue reading

151 Episoden

Alle Folgen

×
 
Loading …

Willkommen auf Player FM!

Player FM scannt gerade das Web nach Podcasts mit hoher Qualität, die du genießen kannst. Es ist die beste Podcast-App und funktioniert auf Android, iPhone und im Web. Melde dich an, um Abos geräteübergreifend zu synchronisieren.

 

Kurzanleitung

Hören Sie sich diese Show an, während Sie die Gegend erkunden
Abspielen