Artwork

Inhalt bereitgestellt von Real Python. Alle Podcast-Inhalte, einschließlich Episoden, Grafiken und Podcast-Beschreibungen, werden direkt von Real Python oder seinem Podcast-Plattformpartner hochgeladen und bereitgestellt. Wenn Sie glauben, dass jemand Ihr urheberrechtlich geschütztes Werk ohne Ihre Erlaubnis nutzt, können Sie dem hier beschriebenen Verfahren folgen https://de.player.fm/legal.
Player FM - Podcast-App
Gehen Sie mit der App Player FM offline!

Preparing Data Science Projects for Production

59:12
 
Teilen
 

Manage episode 519418766 series 2637014
Inhalt bereitgestellt von Real Python. Alle Podcast-Inhalte, einschließlich Episoden, Grafiken und Podcast-Beschreibungen, werden direkt von Real Python oder seinem Podcast-Plattformpartner hochgeladen und bereitgestellt. Wenn Sie glauben, dass jemand Ihr urheberrechtlich geschütztes Werk ohne Ihre Erlaubnis nutzt, können Sie dem hier beschriebenen Verfahren folgen https://de.player.fm/legal.

How do you prepare your Python data science projects for production? What are the essential tools and techniques to make your code reproducible, organized, and testable? This week on the show, Khuyen Tran from CodeCut discusses her new book, “Production Ready Data Science.”

Khuyen shares how she got into blogging and what motivated her to write a book. She shares tips on how to create repeatable workflows. We delve into modern Python tools that will help you bring your projects to production.

Topics:

  • 00:00:00 – Introduction
  • 00:01:27 – Recent article about top six visualization libraries
  • 00:02:19 – How long have you been blogging?
  • 00:03:55 – What do you cover in your book?
  • 00:07:07 – Potential issues with notebooks
  • 00:11:40 – Structuring data science projects
  • 00:15:12 – Reproducibility and sharing notebooks
  • 00:20:33 – Using Polars
  • 00:26:03 – Advantages of marimo notebooks
  • 00:34:21 – Video Course Spotlight
  • 00:35:44 – Shipping a project in data science
  • 00:42:10 – Advice on testing
  • 00:49:50 – Creating importable parameter values
  • 00:53:55 – Seeing the commit diff of a notebook
  • 00:55:12 – What are you excited about in the world of Python?
  • 00:56:04 – What do you want to learn next?
  • 00:56:52 – What’s the best way to follow your work online?
  • 00:58:28 – Thanks and goodbye

Show Links:

Level up your Python skills with our expert-led courses:

Support the podcast & join our community of Pythonistas

  continue reading

277 Episoden

Artwork
iconTeilen
 
Manage episode 519418766 series 2637014
Inhalt bereitgestellt von Real Python. Alle Podcast-Inhalte, einschließlich Episoden, Grafiken und Podcast-Beschreibungen, werden direkt von Real Python oder seinem Podcast-Plattformpartner hochgeladen und bereitgestellt. Wenn Sie glauben, dass jemand Ihr urheberrechtlich geschütztes Werk ohne Ihre Erlaubnis nutzt, können Sie dem hier beschriebenen Verfahren folgen https://de.player.fm/legal.

How do you prepare your Python data science projects for production? What are the essential tools and techniques to make your code reproducible, organized, and testable? This week on the show, Khuyen Tran from CodeCut discusses her new book, “Production Ready Data Science.”

Khuyen shares how she got into blogging and what motivated her to write a book. She shares tips on how to create repeatable workflows. We delve into modern Python tools that will help you bring your projects to production.

Topics:

  • 00:00:00 – Introduction
  • 00:01:27 – Recent article about top six visualization libraries
  • 00:02:19 – How long have you been blogging?
  • 00:03:55 – What do you cover in your book?
  • 00:07:07 – Potential issues with notebooks
  • 00:11:40 – Structuring data science projects
  • 00:15:12 – Reproducibility and sharing notebooks
  • 00:20:33 – Using Polars
  • 00:26:03 – Advantages of marimo notebooks
  • 00:34:21 – Video Course Spotlight
  • 00:35:44 – Shipping a project in data science
  • 00:42:10 – Advice on testing
  • 00:49:50 – Creating importable parameter values
  • 00:53:55 – Seeing the commit diff of a notebook
  • 00:55:12 – What are you excited about in the world of Python?
  • 00:56:04 – What do you want to learn next?
  • 00:56:52 – What’s the best way to follow your work online?
  • 00:58:28 – Thanks and goodbye

Show Links:

Level up your Python skills with our expert-led courses:

Support the podcast & join our community of Pythonistas

  continue reading

277 Episoden

所有剧集

×
 
Loading …

Willkommen auf Player FM!

Player FM scannt gerade das Web nach Podcasts mit hoher Qualität, die du genießen kannst. Es ist die beste Podcast-App und funktioniert auf Android, iPhone und im Web. Melde dich an, um Abos geräteübergreifend zu synchronisieren.

 

Kurzanleitung

Hören Sie sich diese Show an, während Sie die Gegend erkunden
Abspielen