Artwork

Inhalt bereitgestellt von Marcel Kurovski. Alle Podcast-Inhalte, einschließlich Episoden, Grafiken und Podcast-Beschreibungen, werden direkt von Marcel Kurovski oder seinem Podcast-Plattformpartner hochgeladen und bereitgestellt. Wenn Sie glauben, dass jemand Ihr urheberrechtlich geschütztes Werk ohne Ihre Erlaubnis nutzt, können Sie dem hier beschriebenen Verfahren folgen https://de.player.fm/legal.
Player FM - Podcast-App
Gehen Sie mit der App Player FM offline!

#23: Generative Models for Recommender Systems with Yashar Deldjoo

1:54:58
 
Teilen
 

Manage episode 434567869 series 3288795
Inhalt bereitgestellt von Marcel Kurovski. Alle Podcast-Inhalte, einschließlich Episoden, Grafiken und Podcast-Beschreibungen, werden direkt von Marcel Kurovski oder seinem Podcast-Plattformpartner hochgeladen und bereitgestellt. Wenn Sie glauben, dass jemand Ihr urheberrechtlich geschütztes Werk ohne Ihre Erlaubnis nutzt, können Sie dem hier beschriebenen Verfahren folgen https://de.player.fm/legal.

In episode 23 of Recsperts, we welcome Yashar Deldjoo, Assistant Professor at the Polytechnic University of Bari, Italy. Yashar's research on recommender systems includes multimodal approaches, multimedia recommender systems as well as trustworthiness and adversarial robustness, where he has published a lot of work. We discuss the evolution of generative models for recommender systems, modeling paradigms, scenarios as well as their evaluation, risks and harms.

We begin our interview with a reflection of Yashar's areas of recommender systems research so far. Starting with multimedia recsys, particularly video recommendations, Yashar covers his work around adversarial robustness and trustworthiness leading to the main topic for this episode: generative models for recommender systems. We learn about their aspects for improving beyond the (partially saturated) state of traditional recommender systems: improve effectiveness and efficiency for top-n recommendations, introduce interactivity beyond classical conversational recsys, provide personalized zero- or few-shot recommendations.
We learn about the modeling paradigms and as well about the scenarios for generative models which mainly differ by input and modelling approach: ID-based, text-based, and multimodal generative models. This is how we navigate the large field of acronyms leading us from VAEs and GANs to LLMs.

Towards the end of the episode, we also touch on the evaluation, opportunities, risks and harms of generative models for recommender systems. Yashar also provides us with an ample amount of references and upcoming events where people get the chance to know more about GenRecSys.

Enjoy this enriching episode of RECSPERTS - Recommender Systems Experts.
Don't forget to follow the podcast and please leave a review

  • (00:00) - Introduction
  • (03:58) - About Yashar Deldjoo
  • (09:34) - Motivation for RecSys
  • (13:05) - Intro to Generative Models for Recommender Systems
  • (44:27) - Modeling Paradigms for Generative Models
  • (51:33) - Scenario 1: Interaction-Driven Recommendation
  • (57:59) - Scenario 2: Text-based Recommendation
  • (01:10:39) - Scenario 3: Multimodal Recommendation
  • (01:24:59) - Evaluation of Impact and Harm
  • (01:38:07) - Further Research Challenges
  • (01:45:03) - References and Research Advice
  • (01:49:39) - Closing Remarks

Links from the Episode:

Papers:

General Links:

  continue reading

26 Episoden

Artwork
iconTeilen
 
Manage episode 434567869 series 3288795
Inhalt bereitgestellt von Marcel Kurovski. Alle Podcast-Inhalte, einschließlich Episoden, Grafiken und Podcast-Beschreibungen, werden direkt von Marcel Kurovski oder seinem Podcast-Plattformpartner hochgeladen und bereitgestellt. Wenn Sie glauben, dass jemand Ihr urheberrechtlich geschütztes Werk ohne Ihre Erlaubnis nutzt, können Sie dem hier beschriebenen Verfahren folgen https://de.player.fm/legal.

In episode 23 of Recsperts, we welcome Yashar Deldjoo, Assistant Professor at the Polytechnic University of Bari, Italy. Yashar's research on recommender systems includes multimodal approaches, multimedia recommender systems as well as trustworthiness and adversarial robustness, where he has published a lot of work. We discuss the evolution of generative models for recommender systems, modeling paradigms, scenarios as well as their evaluation, risks and harms.

We begin our interview with a reflection of Yashar's areas of recommender systems research so far. Starting with multimedia recsys, particularly video recommendations, Yashar covers his work around adversarial robustness and trustworthiness leading to the main topic for this episode: generative models for recommender systems. We learn about their aspects for improving beyond the (partially saturated) state of traditional recommender systems: improve effectiveness and efficiency for top-n recommendations, introduce interactivity beyond classical conversational recsys, provide personalized zero- or few-shot recommendations.
We learn about the modeling paradigms and as well about the scenarios for generative models which mainly differ by input and modelling approach: ID-based, text-based, and multimodal generative models. This is how we navigate the large field of acronyms leading us from VAEs and GANs to LLMs.

Towards the end of the episode, we also touch on the evaluation, opportunities, risks and harms of generative models for recommender systems. Yashar also provides us with an ample amount of references and upcoming events where people get the chance to know more about GenRecSys.

Enjoy this enriching episode of RECSPERTS - Recommender Systems Experts.
Don't forget to follow the podcast and please leave a review

  • (00:00) - Introduction
  • (03:58) - About Yashar Deldjoo
  • (09:34) - Motivation for RecSys
  • (13:05) - Intro to Generative Models for Recommender Systems
  • (44:27) - Modeling Paradigms for Generative Models
  • (51:33) - Scenario 1: Interaction-Driven Recommendation
  • (57:59) - Scenario 2: Text-based Recommendation
  • (01:10:39) - Scenario 3: Multimodal Recommendation
  • (01:24:59) - Evaluation of Impact and Harm
  • (01:38:07) - Further Research Challenges
  • (01:45:03) - References and Research Advice
  • (01:49:39) - Closing Remarks

Links from the Episode:

Papers:

General Links:

  continue reading

26 Episoden

Alle Folgen

×
 
Loading …

Willkommen auf Player FM!

Player FM scannt gerade das Web nach Podcasts mit hoher Qualität, die du genießen kannst. Es ist die beste Podcast-App und funktioniert auf Android, iPhone und im Web. Melde dich an, um Abos geräteübergreifend zu synchronisieren.

 

Kurzanleitung