Artwork

Inhalt bereitgestellt von HackerNoon. Alle Podcast-Inhalte, einschließlich Episoden, Grafiken und Podcast-Beschreibungen, werden direkt von HackerNoon oder seinem Podcast-Plattformpartner hochgeladen und bereitgestellt. Wenn Sie glauben, dass jemand Ihr urheberrechtlich geschütztes Werk ohne Ihre Erlaubnis nutzt, können Sie dem hier beschriebenen Verfahren folgen https://de.player.fm/legal.
Player FM - Podcast-App
Gehen Sie mit der App Player FM offline!

Developing a Natural Language Understanding Model to Characterize Cable News Bias

4:30
 
Teilen
 

Manage episode 419074984 series 3474160
Inhalt bereitgestellt von HackerNoon. Alle Podcast-Inhalte, einschließlich Episoden, Grafiken und Podcast-Beschreibungen, werden direkt von HackerNoon oder seinem Podcast-Plattformpartner hochgeladen und bereitgestellt. Wenn Sie glauben, dass jemand Ihr urheberrechtlich geschütztes Werk ohne Ihre Erlaubnis nutzt, können Sie dem hier beschriebenen Verfahren folgen https://de.player.fm/legal.

This story was originally published on HackerNoon at: https://hackernoon.com/developing-a-natural-language-understanding-model-to-characterize-cable-news-bias.
The increasing trend of political polarization in the U.S. is reflected in media consumption patterns that indicate partisan polarization.
Check more stories related to media at: https://hackernoon.com/c/media. You can also check exclusive content about #media, #media-bias-analysis, #media-bias-in-the-usa, #cable-news-bias, #stance-analysis, #natural-language-processing, #political-polarization, #bias-in-the-news, and more.
This story was written by: @mediabias. Learn more about this writer by checking @mediabias's about page, and for more stories, please visit hackernoon.com.
The increasing trend of political polarization in the U.S. is reflected in media consumption patterns that indicate partisan polarization. We develop an unsupervised machine learning method to characterize the bias of cable news programs without any human input. This method relies on the analysis of what topics are mentioned through Named Entity Recognition and how those topics are discussed through Stance Analysis.

  continue reading

166 Episoden

Artwork
iconTeilen
 
Manage episode 419074984 series 3474160
Inhalt bereitgestellt von HackerNoon. Alle Podcast-Inhalte, einschließlich Episoden, Grafiken und Podcast-Beschreibungen, werden direkt von HackerNoon oder seinem Podcast-Plattformpartner hochgeladen und bereitgestellt. Wenn Sie glauben, dass jemand Ihr urheberrechtlich geschütztes Werk ohne Ihre Erlaubnis nutzt, können Sie dem hier beschriebenen Verfahren folgen https://de.player.fm/legal.

This story was originally published on HackerNoon at: https://hackernoon.com/developing-a-natural-language-understanding-model-to-characterize-cable-news-bias.
The increasing trend of political polarization in the U.S. is reflected in media consumption patterns that indicate partisan polarization.
Check more stories related to media at: https://hackernoon.com/c/media. You can also check exclusive content about #media, #media-bias-analysis, #media-bias-in-the-usa, #cable-news-bias, #stance-analysis, #natural-language-processing, #political-polarization, #bias-in-the-news, and more.
This story was written by: @mediabias. Learn more about this writer by checking @mediabias's about page, and for more stories, please visit hackernoon.com.
The increasing trend of political polarization in the U.S. is reflected in media consumption patterns that indicate partisan polarization. We develop an unsupervised machine learning method to characterize the bias of cable news programs without any human input. This method relies on the analysis of what topics are mentioned through Named Entity Recognition and how those topics are discussed through Stance Analysis.

  continue reading

166 Episoden

Kaikki jaksot

×
 
Loading …

Willkommen auf Player FM!

Player FM scannt gerade das Web nach Podcasts mit hoher Qualität, die du genießen kannst. Es ist die beste Podcast-App und funktioniert auf Android, iPhone und im Web. Melde dich an, um Abos geräteübergreifend zu synchronisieren.

 

Kurzanleitung