show episodes
 
Fehleranalyse (Gleitpunktdarstellung, Rundung, Fehlerfortpflanzung, Kondition, Gutartigkeit) Polynominterpolation (Dividierte Differenzen, Interpolationsfehler) Asymptotische Entwicklungen und Extrapolation (Richardson-Extrapolation) Numerische Integration (Newton-Cotes-Formel, Romberg-Integration, Gaußsche Integration) Lineare Gleichungssysteme (Gaußscher Algorithmus, LR-Zerlegung, Cholesky-Zerlegung, Matrixnormen, Fehlerabschätzungen) Nichtlineare Gleichungssysteme (Fixpunktsätze, Konverge ...
 
Loading …
show series
 
14: Fehlerdarstellung der numerischen Quadratur | Eigenwertprobleme | Kondition des Problems | Vektoriteration | Inverse Vektoriteration | Spektrale BisektionVon Dr. Daniel Weiß
 
12: Abschluss: Beziér-Technik | Numerische Integration, einfache Regeln | Eigenschaften des Integrals | Kondition des Problems | Quadraturformel (QF) | Ordnung einer QFVon Dr. Daniel Weiß
 
11: Einführung | Polynome im R^d | Bernstein-Polynome | Kontrollpunkte, Bézier-Polygone | Geometrische Eigenschaften | Der Algorithmus von de CasteljauVon Dr. Daniel Weiß
 
10: Anmerkung zur letzten Vorlesung | Problematik der Polynominterpolation | Kubische Splines | Typen kubischer Splines | Konstruktion | Kondition eingespannter Splines | Fehlerabschätzung eingespannter SplinesVon Dr. Daniel Weiß
 
07: cg-Verfahren für die Normalengleichung | Problemstellung der Interpolation | Lagrangesche Interpolationsformel | Newtonsche Interpolationsformel | InterpolationsfehlerVon Dr. Daniel Weiß
 
05: Nichtlineare Gleichungssysteme | Motivation des Newton-Verfahrens | Praktische Durchführung | Konvergenz | Vereinfachtes Newton-Verfahren | Fixpunktgleichungen | Banachscher FixpunktsatzVon Dr. Daniel Weiß
 
Loading …

Kurzanleitung

Google login Twitter login Classic login