Moving Asymptotics

49:42
 
Teilen
 

Manage episode 295473327 series 44313
Von Sebastian Ritterbusch and Gudrun Thäter entdeckt von Player FM und unserer Community - Das Urheberrecht hat der Herausgeber, nicht Player FM, und die Audiodaten werden direkt von ihren Servern gestreamt. Tippe auf Abonnieren um Updates in Player FM zu verfolgen oder füge die URL in andere Podcast Apps ein.

Gudrun spricht in dieser Folge mit Attila Genda über sein Praktikum bei Dassault Systèmes (Standort Karlsruhe), das er m Frühjahr und Sommer 2020 im Rahmen seines Masterstudiums Technomathematik absolviert hat.

Bei Dassault Systèmes in Karlsruhe wird schon seit einigen Jahrzehnten Strukturoptimierung betrieben. Wir haben dort auch schon einige Podcastfolgen zu den mathematischen Hintergründen und den aktuellen Weiterentwicklungen aufgenommen (s.u.). Für die numerische Lösung der betrachteten partiellen Differentialgleichungen werden Finite Elemente Verfahren eingesetzt.

Grundlage einer jeden Strukturoptimierung ist ein mathematisches Optimierungsproblem unter Nebenbedingungen. Dazu werden eine Zielgröße und mehrere Nebenbedingungen definiert. Die Zielgröße ist dabei abhängig von zu bestimmenden Variablen, die als Unbekannte oder Optimierungsparameter bezeichnet werden. Die Nebenbedingungen sind Bedingungen an die Variablen, die erfüllt sein müssen, damit die Löung ”zulässig“ ist. Das Ziel der Optimierung ist nun die Minimierung der Zielgröße unter Einhaltung der Nebenbedingungen.

Um konkrete Probleme zu lösen, gibt es eine Bandbreite verschiedener Löungsmöglichkeiten, die jeweils auf die Aufgabenstellung zugeschnitten werden. Alle Löser bzw. Minimierungsprobleme haben jedoch gemein, dass sowohl die Konvexität der Zielfunktion als auch die Konvexität des Designgebiets von fundamentaler Bedeutung für die Lösbarkeit des Problems sind.

Strukturoptimierung verändert die Form eines Bauteils oder einer Baugruppe so, dass weniger Material nötig ist, aber vorgegebene Festigkeitsanforderungen (z.B. Spannungen, denen das Teil typischerweise ausgesetzt ist) erfüllt sind. Dabei darf sich die Materialverteilung frei in approximativen Schritten verändern und ist nicht durch eine Vorplanung der prinzipiell einzuhaltenden äußeren Form begrenzt. Dies führt z.B. zur Entstehung von Löchern in der Form des Bauteils, was die Topologie auch im mathematischen Sinne verändert. Das ist kompliziert und einfach zugleich - je nachdem, unter welchem Blickwinkel man es betrachtet.

Die Einfachheit ergibt sich aus der Tatsache, dass keine Zellen aus dem numerischen Netz der Numerik entfernt werden. Man setzt einfach eine Variable, die angibt, ob dort Material vorhanden ist oder nicht. Anstatt dies jedoch mit binären Werten zu tun (d.h. Material "an" oder "aus"), ändert man die Materialdichte der Zelle kontinuierlich zwischen [0, 1]. Dabei steht 0 für kein Material und 1 für die volle Materialmenge. Um numerische Probleme zu vermeiden wird statt 0 eine kleine Zahl verwendet.

Da diese Modellierung im Allgemeinen zu physikalisch nicht interpretierbaren Ergebnissen führt, bei denen die Zellen weder leer sind noch die volle Menge an Material enthalten, müssen wir sicherstellen, dass der Optimierer dazu neigt, Ergebnisse zu finden, bei denen die Anzahl der Zellen mit mittlerer Dichte minimal ist. Dazu bestrafen wir solche Konstruktionen. Diese Verfahren heißen Solid Isotropic Material with Penalization Method - kurz SIMP-Methode.

Strukturoptimierungsaufgaben enthalten in der Regel eine sehr große Anzahl von Designvariablen, in der Praxis sind es nicht selten mehrere Millionen von Variablen, die die Zielfunktion beeinflussen. Demgegenüber ist die Zahl der Nebenbedingungen viel kleiner - oft gibt es sogar nur ein paar wenige. Da Strukturoptimierungsprobleme im Allgemeinem keine konvexen Promleme sind und oft auch keine linearen Probleme, ist die Auswertung des Zielfunktionals und der Nebenbedingungen sehr rechenintensiv. Deshalb wurden spezielle Algorithmen entwickelt, die besonders geeignet für die Lösung solcher Probleme sind, weil sie vermeiden können, dass bis zur Konvergenz eine große Anzahl von Funktionsauswertungen stattfinden müssen. Der wahrscheinlich meist verbreitete Algorithmus heißt Method of Moving Asymptotes (MAA). Er wird in der Podcastepisode diskutiert.

Die Aufgabe von Attila in seiner Zeit des Praktikums war es nämlich, diese Methode zu verallgemeinern, dann zum implementieren und die Implementierung zu testen.

Die ursprünglich angewandte MAA-Methode, die von Svanberg vorgeschlagen wurde, verwendet nur einen sehr einfachen Ansatz zur Behandlung der Länge des Intervalls zwischen der unteren und oberen Asymptote.


Literatur und weiterführende Informationen


Podcasts

245 Episoden