Artwork

Inhalt bereitgestellt von Sebastian Ritterbusch and Gudrun Thäter. Alle Podcast-Inhalte, einschließlich Episoden, Grafiken und Podcast-Beschreibungen, werden direkt von Sebastian Ritterbusch and Gudrun Thäter oder seinem Podcast-Plattformpartner hochgeladen und bereitgestellt. Wenn Sie glauben, dass jemand Ihr urheberrechtlich geschütztes Werk ohne Ihre Erlaubnis nutzt, können Sie dem hier beschriebenen Verfahren folgen https://de.player.fm/legal.
Player FM - Podcast-App
Gehen Sie mit der App Player FM offline!

Energie und KI

39:04
 
Teilen
 

Manage episode 257125918 series 44313
Inhalt bereitgestellt von Sebastian Ritterbusch and Gudrun Thäter. Alle Podcast-Inhalte, einschließlich Episoden, Grafiken und Podcast-Beschreibungen, werden direkt von Sebastian Ritterbusch and Gudrun Thäter oder seinem Podcast-Plattformpartner hochgeladen und bereitgestellt. Wenn Sie glauben, dass jemand Ihr urheberrechtlich geschütztes Werk ohne Ihre Erlaubnis nutzt, können Sie dem hier beschriebenen Verfahren folgen https://de.player.fm/legal.

Gudrun sprach im März 2020 mit Nicole Ludwig. Sie ist eine Kollegin am KIT am Campus Nord und gehört dem Institut für Automation und angewandte Informatik an. Sie war Mitglied des DFG Graduiertenkollegs Energiezustandsdaten Informatikmethoden zur Analyse, Erfassung und Nutzung und ist dabei, ihre Promotion abzuschließen. Im Studium wurde sie von den Themen der Ökonometrie und Statistik eingefangen und von der Freude, aus empirischen Daten verlässliche Ergebnisse ableiten zu können. Sie hat schon in ihrer Bachelorarbeit Maschinelles Lernen für Prognosen benutzt. Deshalb war es sehr spannend für sie, diese Kenntnisse und ihre Freude am Thema in das Graduiertenkolleg zu Energiedaten und Informatik einzubringen.

Als Gesellschaft müssen wir in naher Zukunft eine Energieproduktion ohne fossile Brennstoffe erreichen. Es ist jedoch nötig, beim Nutzen von erneuerbaren Energien im Vergleich zu konventioneller Energieerzeugung umzulernen, um einerseits für eine stabile Versorgung von Wirtschaft und Haushalten zu sorgen und andererseits dabei alle Lasten der nötigen Veränderungen fair zu verteilen.

Es gibt zwei Möglichkeiten, die Energieproduktion zu optimieren. Zum einen können wir den Produktionszeitplan besser auf die Nachfrage abstimmen. Zum anderen können wir das Verbrauchsverhalten ändern, um eine optimale Versorgungsstrategie zu unterstützen. Traditionell kennt man Prognosen für die Energienachfrage in unterschiedlichen Zeithorizonten und macht diese zur Grundlage für Produktionspläne. Mit einer zunehmenden und sich ändernden Menge an Variablen, die das System beeinflussen, sind perfekte Vorhersagen jedoch sehr unrealistisch und wahrscheinlich nicht der richtige Ansatz für die Zukunft.

Man muss sich hierzu nur vor Augen halten, dass die Energieernte sowohl bei Windkraft als auch für Solarstrom stark vom Wetter abhängen. Wenn auch die Wettervorhersage schon sehr viel besser geworden ist, so ist es doch noch nicht möglich, auf ihrer Grundlage hinreichend sichere Vorhersagen für die Energieerzeugung machen zu können. Andererseits gibt es heute auch bessere Möglichkeiten, die Energieabnahme zumindest im Prinzip von außen zu steuern. Das was früher als Nachtstrom die Abnahme von Stromspitzen mit niedrigen Preisen versüßte, kann heute ganz regional und sich täglich anpassend nicht nur in Betrieben sondern sogar im Haushalt steuern, wann beispielsweise die Waschmaschine läuft oder ein Warmwasserspeicher lädt. Bald kann auch die Flotte an E-Fahrzeugen mit ihren Akkumulatoren Energie zum passenden Zeitpunkt abnehmen und auch in Spitzenzeiten wieder abgeben.

Die Gesetzgebung ist hier noch nicht so weit wie die technischen Möglichkeiten. Aber man muss sicher auch noch einmal gründlich darüber nachdenken, in welcher Art und Weise man Personen dazu zwingen will, Daten dafür zur Verfügung zu stellen und wie man sie anschließend vor dem Missbrauch dieses Wissens durch Unbefugte schützen kann. Schon heute ist die Energieversorgung viel verwundbarer durch Angriffe von Hackern als wir uns eingestehen wollen.

Prinzipiell liegen aber - schon allein in Bezug auf Wetterdaten - aber auch in feingranularem Wissen über Energieverbrauch - sehr viele Daten vor, die man nutzen kann, um neuartige Prognosen zu erarbeiten. Man geht also über von rein Physik-basierten Modellen und Expertenwissen über zu neuronalen Netzen und Datamining. Diese arbeiten natürlich nicht sinnvoll ohne den Expertenblick, denn welche Fragen die vorliegenden Daten sinnvoll und recht sicher beantworten können, ist naiv geplant sicher nicht möglich.

Nicole gefällt es gut, an der Schnittstelle sehr unterschiedlicher Wissensgebiete (Wirtschaft, Physik/Meteorologie, Ingenieurswissenschaft und Informatik) zu forschen.


Literatur und weiterführende Informationen


Podcasts

  continue reading

252 Episoden

Artwork

Energie und KI

Modellansatz

133 subscribers

published

iconTeilen
 
Manage episode 257125918 series 44313
Inhalt bereitgestellt von Sebastian Ritterbusch and Gudrun Thäter. Alle Podcast-Inhalte, einschließlich Episoden, Grafiken und Podcast-Beschreibungen, werden direkt von Sebastian Ritterbusch and Gudrun Thäter oder seinem Podcast-Plattformpartner hochgeladen und bereitgestellt. Wenn Sie glauben, dass jemand Ihr urheberrechtlich geschütztes Werk ohne Ihre Erlaubnis nutzt, können Sie dem hier beschriebenen Verfahren folgen https://de.player.fm/legal.

Gudrun sprach im März 2020 mit Nicole Ludwig. Sie ist eine Kollegin am KIT am Campus Nord und gehört dem Institut für Automation und angewandte Informatik an. Sie war Mitglied des DFG Graduiertenkollegs Energiezustandsdaten Informatikmethoden zur Analyse, Erfassung und Nutzung und ist dabei, ihre Promotion abzuschließen. Im Studium wurde sie von den Themen der Ökonometrie und Statistik eingefangen und von der Freude, aus empirischen Daten verlässliche Ergebnisse ableiten zu können. Sie hat schon in ihrer Bachelorarbeit Maschinelles Lernen für Prognosen benutzt. Deshalb war es sehr spannend für sie, diese Kenntnisse und ihre Freude am Thema in das Graduiertenkolleg zu Energiedaten und Informatik einzubringen.

Als Gesellschaft müssen wir in naher Zukunft eine Energieproduktion ohne fossile Brennstoffe erreichen. Es ist jedoch nötig, beim Nutzen von erneuerbaren Energien im Vergleich zu konventioneller Energieerzeugung umzulernen, um einerseits für eine stabile Versorgung von Wirtschaft und Haushalten zu sorgen und andererseits dabei alle Lasten der nötigen Veränderungen fair zu verteilen.

Es gibt zwei Möglichkeiten, die Energieproduktion zu optimieren. Zum einen können wir den Produktionszeitplan besser auf die Nachfrage abstimmen. Zum anderen können wir das Verbrauchsverhalten ändern, um eine optimale Versorgungsstrategie zu unterstützen. Traditionell kennt man Prognosen für die Energienachfrage in unterschiedlichen Zeithorizonten und macht diese zur Grundlage für Produktionspläne. Mit einer zunehmenden und sich ändernden Menge an Variablen, die das System beeinflussen, sind perfekte Vorhersagen jedoch sehr unrealistisch und wahrscheinlich nicht der richtige Ansatz für die Zukunft.

Man muss sich hierzu nur vor Augen halten, dass die Energieernte sowohl bei Windkraft als auch für Solarstrom stark vom Wetter abhängen. Wenn auch die Wettervorhersage schon sehr viel besser geworden ist, so ist es doch noch nicht möglich, auf ihrer Grundlage hinreichend sichere Vorhersagen für die Energieerzeugung machen zu können. Andererseits gibt es heute auch bessere Möglichkeiten, die Energieabnahme zumindest im Prinzip von außen zu steuern. Das was früher als Nachtstrom die Abnahme von Stromspitzen mit niedrigen Preisen versüßte, kann heute ganz regional und sich täglich anpassend nicht nur in Betrieben sondern sogar im Haushalt steuern, wann beispielsweise die Waschmaschine läuft oder ein Warmwasserspeicher lädt. Bald kann auch die Flotte an E-Fahrzeugen mit ihren Akkumulatoren Energie zum passenden Zeitpunkt abnehmen und auch in Spitzenzeiten wieder abgeben.

Die Gesetzgebung ist hier noch nicht so weit wie die technischen Möglichkeiten. Aber man muss sicher auch noch einmal gründlich darüber nachdenken, in welcher Art und Weise man Personen dazu zwingen will, Daten dafür zur Verfügung zu stellen und wie man sie anschließend vor dem Missbrauch dieses Wissens durch Unbefugte schützen kann. Schon heute ist die Energieversorgung viel verwundbarer durch Angriffe von Hackern als wir uns eingestehen wollen.

Prinzipiell liegen aber - schon allein in Bezug auf Wetterdaten - aber auch in feingranularem Wissen über Energieverbrauch - sehr viele Daten vor, die man nutzen kann, um neuartige Prognosen zu erarbeiten. Man geht also über von rein Physik-basierten Modellen und Expertenwissen über zu neuronalen Netzen und Datamining. Diese arbeiten natürlich nicht sinnvoll ohne den Expertenblick, denn welche Fragen die vorliegenden Daten sinnvoll und recht sicher beantworten können, ist naiv geplant sicher nicht möglich.

Nicole gefällt es gut, an der Schnittstelle sehr unterschiedlicher Wissensgebiete (Wirtschaft, Physik/Meteorologie, Ingenieurswissenschaft und Informatik) zu forschen.


Literatur und weiterführende Informationen


Podcasts

  continue reading

252 Episoden

Alle Folgen

×
 
Loading …

Willkommen auf Player FM!

Player FM scannt gerade das Web nach Podcasts mit hoher Qualität, die du genießen kannst. Es ist die beste Podcast-App und funktioniert auf Android, iPhone und im Web. Melde dich an, um Abos geräteübergreifend zu synchronisieren.

 

Kurzanleitung