Artwork

Inhalt bereitgestellt von Aaron Stump. Alle Podcast-Inhalte, einschließlich Episoden, Grafiken und Podcast-Beschreibungen, werden direkt von Aaron Stump oder seinem Podcast-Plattformpartner hochgeladen und bereitgestellt. Wenn Sie glauben, dass jemand Ihr urheberrechtlich geschütztes Werk ohne Ihre Erlaubnis nutzt, können Sie dem hier beschriebenen Verfahren folgen https://de.player.fm/legal.
Player FM - Podcast-App
Gehen Sie mit der App Player FM offline!

The curious case of exponentiation in simply typed lambda calculus

7:29
 
Teilen
 

Manage episode 416402103 series 2823367
Inhalt bereitgestellt von Aaron Stump. Alle Podcast-Inhalte, einschließlich Episoden, Grafiken und Podcast-Beschreibungen, werden direkt von Aaron Stump oder seinem Podcast-Plattformpartner hochgeladen und bereitgestellt. Wenn Sie glauben, dass jemand Ihr urheberrechtlich geschütztes Werk ohne Ihre Erlaubnis nutzt, können Sie dem hier beschriebenen Verfahren folgen https://de.player.fm/legal.

Like addition and multiplication on Church-encoded numbers, exponentiation can be assigned a type in simply typed lambda calculus (STLC). But surprisingly, the type is non-uniform. If we abbreviate (A -> A) -> A -> A as Nat_A, then exponentiation, which is defined as \ x . \ y . y x, can be assigned type Nat_A -> Nat_(A -> A) -> Nat_A. The second argument needs to have type at strictly higher order than the first argument. This has the fascinating consequence that we cannot define self-exponentiation, \ x . exp x x. That term would reduce to \ x . x x, which is provably not typable in STLC.

  continue reading

178 Episoden

Artwork
iconTeilen
 
Manage episode 416402103 series 2823367
Inhalt bereitgestellt von Aaron Stump. Alle Podcast-Inhalte, einschließlich Episoden, Grafiken und Podcast-Beschreibungen, werden direkt von Aaron Stump oder seinem Podcast-Plattformpartner hochgeladen und bereitgestellt. Wenn Sie glauben, dass jemand Ihr urheberrechtlich geschütztes Werk ohne Ihre Erlaubnis nutzt, können Sie dem hier beschriebenen Verfahren folgen https://de.player.fm/legal.

Like addition and multiplication on Church-encoded numbers, exponentiation can be assigned a type in simply typed lambda calculus (STLC). But surprisingly, the type is non-uniform. If we abbreviate (A -> A) -> A -> A as Nat_A, then exponentiation, which is defined as \ x . \ y . y x, can be assigned type Nat_A -> Nat_(A -> A) -> Nat_A. The second argument needs to have type at strictly higher order than the first argument. This has the fascinating consequence that we cannot define self-exponentiation, \ x . exp x x. That term would reduce to \ x . x x, which is provably not typable in STLC.

  continue reading

178 Episoden

Alle Folgen

×
 
Loading …

Willkommen auf Player FM!

Player FM scannt gerade das Web nach Podcasts mit hoher Qualität, die du genießen kannst. Es ist die beste Podcast-App und funktioniert auf Android, iPhone und im Web. Melde dich an, um Abos geräteübergreifend zu synchronisieren.

 

Kurzanleitung

Hören Sie sich diese Show an, während Sie die Gegend erkunden
Abspielen