Artwork

Inhalt bereitgestellt von Dan Turchin. Alle Podcast-Inhalte, einschließlich Episoden, Grafiken und Podcast-Beschreibungen, werden direkt von Dan Turchin oder seinem Podcast-Plattformpartner hochgeladen und bereitgestellt. Wenn Sie glauben, dass jemand Ihr urheberrechtlich geschütztes Werk ohne Ihre Erlaubnis nutzt, können Sie dem hier beschriebenen Verfahren folgen https://de.player.fm/legal.
Player FM - Podcast-App
Gehen Sie mit der App Player FM offline!

Dr. Eric Siegel, Founder of Machine Learning Week, on 6 steps to usher in successful ML projects

36:52
 
Teilen
 

Manage episode 400570702 series 2986762
Inhalt bereitgestellt von Dan Turchin. Alle Podcast-Inhalte, einschließlich Episoden, Grafiken und Podcast-Beschreibungen, werden direkt von Dan Turchin oder seinem Podcast-Plattformpartner hochgeladen und bereitgestellt. Wenn Sie glauben, dass jemand Ihr urheberrechtlich geschütztes Werk ohne Ihre Erlaubnis nutzt, können Sie dem hier beschriebenen Verfahren folgen https://de.player.fm/legal.

Dr. Eric Siegel is a leading consultant and former Columbia University professor who helps companies deploy machine learning. He is the founder of the long-running Machine Learning Week conference series and its new sister, Generative AI World, the instructor of the acclaimed online course “Machine Learning Leadership and Practice – End-to-End Mastery,” executive editor of The Machine Learning Times, and a frequent keynote speaker. He wrote the bestselling "Predictive Analytics: The Power to Predict Who Will Click, Buy, Lie, or Die," which has been used in courses at hundreds of universities, as well as "The AI Playbook: Mastering the Rare Art of Machine Learning Deployment."

Eric’s interdisciplinary work bridges the stubborn technology/business gap. At Columbia, he won the Distinguished Faculty award when teaching the graduate *computer science* courses in ML and AI. Later, he served as a *business school* professor at UVA Darden. Eric has appeared on numerous media channels, including Bloomberg, National Geographic, and NPR, and has published in Newsweek, HBR, SciAm blog, WaPo, WSJ, and more.

Listen and learn

  • How he’s progressed in the field of machine learning over 30 years
  • 6-step process to usher in machine learning programs from conception to deployment
  • What 3 things non-technical people in business should know about how machine learning works & delivers value
  • How to know when to use classical machine learning vs generative AI to solve a data problem
  • How to mitigate the impact of human bias in shaping AI

Resources

  continue reading

257 Episoden

Artwork
iconTeilen
 
Manage episode 400570702 series 2986762
Inhalt bereitgestellt von Dan Turchin. Alle Podcast-Inhalte, einschließlich Episoden, Grafiken und Podcast-Beschreibungen, werden direkt von Dan Turchin oder seinem Podcast-Plattformpartner hochgeladen und bereitgestellt. Wenn Sie glauben, dass jemand Ihr urheberrechtlich geschütztes Werk ohne Ihre Erlaubnis nutzt, können Sie dem hier beschriebenen Verfahren folgen https://de.player.fm/legal.

Dr. Eric Siegel is a leading consultant and former Columbia University professor who helps companies deploy machine learning. He is the founder of the long-running Machine Learning Week conference series and its new sister, Generative AI World, the instructor of the acclaimed online course “Machine Learning Leadership and Practice – End-to-End Mastery,” executive editor of The Machine Learning Times, and a frequent keynote speaker. He wrote the bestselling "Predictive Analytics: The Power to Predict Who Will Click, Buy, Lie, or Die," which has been used in courses at hundreds of universities, as well as "The AI Playbook: Mastering the Rare Art of Machine Learning Deployment."

Eric’s interdisciplinary work bridges the stubborn technology/business gap. At Columbia, he won the Distinguished Faculty award when teaching the graduate *computer science* courses in ML and AI. Later, he served as a *business school* professor at UVA Darden. Eric has appeared on numerous media channels, including Bloomberg, National Geographic, and NPR, and has published in Newsweek, HBR, SciAm blog, WaPo, WSJ, and more.

Listen and learn

  • How he’s progressed in the field of machine learning over 30 years
  • 6-step process to usher in machine learning programs from conception to deployment
  • What 3 things non-technical people in business should know about how machine learning works & delivers value
  • How to know when to use classical machine learning vs generative AI to solve a data problem
  • How to mitigate the impact of human bias in shaping AI

Resources

  continue reading

257 Episoden

Alle Folgen

×
 
Loading …

Willkommen auf Player FM!

Player FM scannt gerade das Web nach Podcasts mit hoher Qualität, die du genießen kannst. Es ist die beste Podcast-App und funktioniert auf Android, iPhone und im Web. Melde dich an, um Abos geräteübergreifend zu synchronisieren.

 

Kurzanleitung

Hören Sie sich diese Show an, während Sie die Gegend erkunden
Abspielen