Artwork

Inhalt bereitgestellt von Ludwig-Maximilians-Universität München and MCMP Team. Alle Podcast-Inhalte, einschließlich Episoden, Grafiken und Podcast-Beschreibungen, werden direkt von Ludwig-Maximilians-Universität München and MCMP Team oder seinem Podcast-Plattformpartner hochgeladen und bereitgestellt. Wenn Sie glauben, dass jemand Ihr urheberrechtlich geschütztes Werk ohne Ihre Erlaubnis nutzt, können Sie dem hier beschriebenen Verfahren folgen https://de.player.fm/legal.
Player FM - Podcast-App
Gehen Sie mit der App Player FM offline!

A useful method for obtaining alternative formulations of the analytical hierarchy

1:14:05
 
Teilen
 

Fetch error

Hmmm there seems to be a problem fetching this series right now. Last successful fetch was on October 13, 2022 23:55 (2y ago)

What now? This series will be checked again in the next day. If you believe it should be working, please verify the publisher's feed link below is valid and includes actual episode links. You can contact support to request the feed be immediately fetched.

Manage episode 293117467 series 2929680
Inhalt bereitgestellt von Ludwig-Maximilians-Universität München and MCMP Team. Alle Podcast-Inhalte, einschließlich Episoden, Grafiken und Podcast-Beschreibungen, werden direkt von Ludwig-Maximilians-Universität München and MCMP Team oder seinem Podcast-Plattformpartner hochgeladen und bereitgestellt. Wenn Sie glauben, dass jemand Ihr urheberrechtlich geschütztes Werk ohne Ihre Erlaubnis nutzt, können Sie dem hier beschriebenen Verfahren folgen https://de.player.fm/legal.
Stanislav O. Speranski (Sobolev Institute of Mathematics) gives a talk at the MCMP Colloquium (6 November, 2014) titled "A useful method for obtaining alternative formulations of the analytical hierarchy". Abstract: In mathematical philosophy one often employs various formal systems and structures for solving philosophical tasks. In particular, many important results in Kripke's theory of truth and the like rest on definability techniques from second-order arithmetic. With this in mind, I will present one useful method for obtaining alternative formulations of the analytical hierarchy. The latter plays a key role in foundations of mathematics and theory of computation, being the generally accepted classification of undecidable problems which capture the truth predicate for first-order arithmetic of natural numbers, and whose computational complexities are less than that of second-order true arithmetic. In the course of the presentation I will mention some relevant contributions of J. Robinson, H. Putnam, J.Y. Halpern, I. Korec and others. Further applications, including those dealing with probabilistic logics, will be discussed in the final part of the talk.
  continue reading

22 Episoden

Artwork
iconTeilen
 

Fetch error

Hmmm there seems to be a problem fetching this series right now. Last successful fetch was on October 13, 2022 23:55 (2y ago)

What now? This series will be checked again in the next day. If you believe it should be working, please verify the publisher's feed link below is valid and includes actual episode links. You can contact support to request the feed be immediately fetched.

Manage episode 293117467 series 2929680
Inhalt bereitgestellt von Ludwig-Maximilians-Universität München and MCMP Team. Alle Podcast-Inhalte, einschließlich Episoden, Grafiken und Podcast-Beschreibungen, werden direkt von Ludwig-Maximilians-Universität München and MCMP Team oder seinem Podcast-Plattformpartner hochgeladen und bereitgestellt. Wenn Sie glauben, dass jemand Ihr urheberrechtlich geschütztes Werk ohne Ihre Erlaubnis nutzt, können Sie dem hier beschriebenen Verfahren folgen https://de.player.fm/legal.
Stanislav O. Speranski (Sobolev Institute of Mathematics) gives a talk at the MCMP Colloquium (6 November, 2014) titled "A useful method for obtaining alternative formulations of the analytical hierarchy". Abstract: In mathematical philosophy one often employs various formal systems and structures for solving philosophical tasks. In particular, many important results in Kripke's theory of truth and the like rest on definability techniques from second-order arithmetic. With this in mind, I will present one useful method for obtaining alternative formulations of the analytical hierarchy. The latter plays a key role in foundations of mathematics and theory of computation, being the generally accepted classification of undecidable problems which capture the truth predicate for first-order arithmetic of natural numbers, and whose computational complexities are less than that of second-order true arithmetic. In the course of the presentation I will mention some relevant contributions of J. Robinson, H. Putnam, J.Y. Halpern, I. Korec and others. Further applications, including those dealing with probabilistic logics, will be discussed in the final part of the talk.
  continue reading

22 Episoden

Alle Folgen

×
 
Loading …

Willkommen auf Player FM!

Player FM scannt gerade das Web nach Podcasts mit hoher Qualität, die du genießen kannst. Es ist die beste Podcast-App und funktioniert auf Android, iPhone und im Web. Melde dich an, um Abos geräteübergreifend zu synchronisieren.

 

Kurzanleitung