Artwork

Inhalt bereitgestellt von The Data Flowcast. Alle Podcast-Inhalte, einschließlich Episoden, Grafiken und Podcast-Beschreibungen, werden direkt von The Data Flowcast oder seinem Podcast-Plattformpartner hochgeladen und bereitgestellt. Wenn Sie glauben, dass jemand Ihr urheberrechtlich geschütztes Werk ohne Ihre Erlaubnis nutzt, können Sie dem hier beschriebenen Verfahren folgen https://de.player.fm/legal.
Player FM - Podcast-App
Gehen Sie mit der App Player FM offline!

How Airflow and AI Power Investigative Journalism at the Financial Times with Zdravko Hvarlingov

24:28
 
Teilen
 

Manage episode 516689556 series 2053958
Inhalt bereitgestellt von The Data Flowcast. Alle Podcast-Inhalte, einschließlich Episoden, Grafiken und Podcast-Beschreibungen, werden direkt von The Data Flowcast oder seinem Podcast-Plattformpartner hochgeladen und bereitgestellt. Wenn Sie glauben, dass jemand Ihr urheberrechtlich geschütztes Werk ohne Ihre Erlaubnis nutzt, können Sie dem hier beschriebenen Verfahren folgen https://de.player.fm/legal.

The Financial Times leverages Airflow and AI to uncover powerful stories hidden within vast, unstructured data.

In this episode, Zdravko Hvarlingov, Senior Software Engineer at the Financial Times, discusses building multi-tenant Airflow systems and AI-driven pipelines that surface stories that might otherwise be missed. Zdravko walks through entity extraction and fuzzy matching, linking the UK Register of Members’ Financial Interests with Companies House, and how this work cuts weeks of manual analysis to minutes.

Key Takeaways:

00:00 Introduction.

02:12 What computational journalism means for day-to-day newsroom work.

05:22 Why a shared orchestration platform supports consistent, scalable workflows.

08:30 Tradeoffs of one centralized platform versus many separate instances.

11:52 Using pipelines to structure messy sources for faster analysis.

14:14 Turning recurring disclosures into usable data for investigations.

16:03 Applying lightweight ML and matching to reveal entities and links.

18:46 How automation reduces manual effort and shortens time to insight.

20:41 Practical improvements that make backfilling and reliability easier.

Resources Mentioned:

Zdravko Hvarlingov

https://www.linkedin.com/in/zdravko-hvarlingov-3aa36016b/

Financial Times | LinkedIn

https://www.linkedin.com/company/financial-times/

Financial Times | Website

https://www.ft.com/

Apache Airflow

https://airflow.apache.org/

UK Register of Members’ Financial Interests

https://www.parliament.uk/mps-lords-and-offices/standards-and-financial-interests/parliamentary-commissioner-for-standards/registers-of-interests/register-of-members-financial-interests/

UK Companies House

https://www.gov.uk/government/organisations/companies-house

Doppler

https://www.doppler.com/

Kubernetes

https://kubernetes.io/

Airflow Kubernetes Executor

https://airflow.apache.org/docs/apache-airflow/stable/executor/kubernetes.html

GitHub

https://github.com/

Thanks for listening to “The Data Flowcast: Mastering Apache Airflow® for Data Engineering and AI.” If you enjoyed this episode, please leave a 5-star review to help get the word out about the show. And be sure to subscribe so you never miss any of the insightful conversations.

#AI #Automation #Airflow #MachineLearning

  continue reading

77 Episoden

Artwork
iconTeilen
 
Manage episode 516689556 series 2053958
Inhalt bereitgestellt von The Data Flowcast. Alle Podcast-Inhalte, einschließlich Episoden, Grafiken und Podcast-Beschreibungen, werden direkt von The Data Flowcast oder seinem Podcast-Plattformpartner hochgeladen und bereitgestellt. Wenn Sie glauben, dass jemand Ihr urheberrechtlich geschütztes Werk ohne Ihre Erlaubnis nutzt, können Sie dem hier beschriebenen Verfahren folgen https://de.player.fm/legal.

The Financial Times leverages Airflow and AI to uncover powerful stories hidden within vast, unstructured data.

In this episode, Zdravko Hvarlingov, Senior Software Engineer at the Financial Times, discusses building multi-tenant Airflow systems and AI-driven pipelines that surface stories that might otherwise be missed. Zdravko walks through entity extraction and fuzzy matching, linking the UK Register of Members’ Financial Interests with Companies House, and how this work cuts weeks of manual analysis to minutes.

Key Takeaways:

00:00 Introduction.

02:12 What computational journalism means for day-to-day newsroom work.

05:22 Why a shared orchestration platform supports consistent, scalable workflows.

08:30 Tradeoffs of one centralized platform versus many separate instances.

11:52 Using pipelines to structure messy sources for faster analysis.

14:14 Turning recurring disclosures into usable data for investigations.

16:03 Applying lightweight ML and matching to reveal entities and links.

18:46 How automation reduces manual effort and shortens time to insight.

20:41 Practical improvements that make backfilling and reliability easier.

Resources Mentioned:

Zdravko Hvarlingov

https://www.linkedin.com/in/zdravko-hvarlingov-3aa36016b/

Financial Times | LinkedIn

https://www.linkedin.com/company/financial-times/

Financial Times | Website

https://www.ft.com/

Apache Airflow

https://airflow.apache.org/

UK Register of Members’ Financial Interests

https://www.parliament.uk/mps-lords-and-offices/standards-and-financial-interests/parliamentary-commissioner-for-standards/registers-of-interests/register-of-members-financial-interests/

UK Companies House

https://www.gov.uk/government/organisations/companies-house

Doppler

https://www.doppler.com/

Kubernetes

https://kubernetes.io/

Airflow Kubernetes Executor

https://airflow.apache.org/docs/apache-airflow/stable/executor/kubernetes.html

GitHub

https://github.com/

Thanks for listening to “The Data Flowcast: Mastering Apache Airflow® for Data Engineering and AI.” If you enjoyed this episode, please leave a 5-star review to help get the word out about the show. And be sure to subscribe so you never miss any of the insightful conversations.

#AI #Automation #Airflow #MachineLearning

  continue reading

77 Episoden

Alle Folgen

×
 
Loading …

Willkommen auf Player FM!

Player FM scannt gerade das Web nach Podcasts mit hoher Qualität, die du genießen kannst. Es ist die beste Podcast-App und funktioniert auf Android, iPhone und im Web. Melde dich an, um Abos geräteübergreifend zu synchronisieren.

 

Kurzanleitung

Hören Sie sich diese Show an, während Sie die Gegend erkunden
Abspielen