Artwork

Inhalt bereitgestellt von Tessl. Alle Podcast-Inhalte, einschließlich Episoden, Grafiken und Podcast-Beschreibungen, werden direkt von Tessl oder seinem Podcast-Plattformpartner hochgeladen und bereitgestellt. Wenn Sie glauben, dass jemand Ihr urheberrechtlich geschütztes Werk ohne Ihre Erlaubnis nutzt, können Sie dem hier beschriebenen Verfahren folgen https://de.player.fm/legal.
Player FM - Podcast-App
Gehen Sie mit der App Player FM offline!

The Graph Layer Behind NASA’s Breakthroughs | Michael Hunger

36:24
 
Teilen
 

Manage episode 493310236 series 3585084
Inhalt bereitgestellt von Tessl. Alle Podcast-Inhalte, einschließlich Episoden, Grafiken und Podcast-Beschreibungen, werden direkt von Tessl oder seinem Podcast-Plattformpartner hochgeladen und bereitgestellt. Wenn Sie glauben, dass jemand Ihr urheberrechtlich geschütztes Werk ohne Ihre Erlaubnis nutzt, können Sie dem hier beschriebenen Verfahren folgen https://de.player.fm/legal.

Michael Hunger of Neo4j, joins Simon Maple to unpack how graph databases inject structure, intent, and traceability into modern AI systems.
On the docket:

  • why relationships in data encode intent
  • the black-box problem in vector based RAG
  • why devs should build their own MCP server

AI Native Dev, powered by Tessl and our global dev community, is your go-to podcast for solutions in software development in the age of AI. Tune in as we engage with engineers, founders, and open-source innovators to talk all things AI, security, and development.
Connect with us here:

  1. Michael Hunger- https://www.linkedin.com/in/jexpde/
  2. Simon Maple- https://www.linkedin.com/in/simonmaple/
  3. Tessl- https://www.linkedin.com/company/tesslio/
  4. AI Native Dev- https://www.linkedin.com/showcase/ai-native-dev/

(00:00) Trailer
(01:03) Introduction & Neo4j Origins
(03:02) Persisting Relationships for High-Performance Queries
(04:00) Modeling Business Intent & Key Use Cases
(05:00) Fraud Detection at Scale with Graph Algorithms
(06:11) Graph-Enhanced RAG vs. Vector-Only Retrieval
(09:02) Explainability & Drill-Down Evaluation in RAG
(13:05) Fusing Structured & Unstructured Data for Context
(15:00) MCP for Developer Productivity: Schema-to-Code & API Wrapping
(21:16) Security & Sandboxing Best Practices for MCP
(29:08) MCP Server Recommendations & Outro

Join the AI Native Dev Community on Discord: https://tessl.co/4ghikjh
Ask us questions: [email protected]

  continue reading

Kapitel

1. Trailer (00:00:00)

2. Introduction & Neo4j Origins (00:01:03)

3. Persisting Relationships for High-Performance Queries (00:03:02)

4. Modeling Business Intent & Key Use Cases (00:04:00)

5. Fraud Detection at Scale with Graph Algorithms (00:05:00)

6. Graph-Enhanced RAG vs. Vector-Only Retrieval (00:06:11)

7. Explainability & Drill-Down Evaluation in RAG (00:09:02)

8. Fusing Structured & Unstructured Data for Context (00:13:05)

9. MCP for Developer Productivity: Schema-to-Code & API Wrapping (00:15:00)

10. Security & Sandboxing Best Practices for MCP (00:21:57)

11. MCP Server Recommendations & Outro (00:29:49)

74 Episoden

Artwork
iconTeilen
 
Manage episode 493310236 series 3585084
Inhalt bereitgestellt von Tessl. Alle Podcast-Inhalte, einschließlich Episoden, Grafiken und Podcast-Beschreibungen, werden direkt von Tessl oder seinem Podcast-Plattformpartner hochgeladen und bereitgestellt. Wenn Sie glauben, dass jemand Ihr urheberrechtlich geschütztes Werk ohne Ihre Erlaubnis nutzt, können Sie dem hier beschriebenen Verfahren folgen https://de.player.fm/legal.

Michael Hunger of Neo4j, joins Simon Maple to unpack how graph databases inject structure, intent, and traceability into modern AI systems.
On the docket:

  • why relationships in data encode intent
  • the black-box problem in vector based RAG
  • why devs should build their own MCP server

AI Native Dev, powered by Tessl and our global dev community, is your go-to podcast for solutions in software development in the age of AI. Tune in as we engage with engineers, founders, and open-source innovators to talk all things AI, security, and development.
Connect with us here:

  1. Michael Hunger- https://www.linkedin.com/in/jexpde/
  2. Simon Maple- https://www.linkedin.com/in/simonmaple/
  3. Tessl- https://www.linkedin.com/company/tesslio/
  4. AI Native Dev- https://www.linkedin.com/showcase/ai-native-dev/

(00:00) Trailer
(01:03) Introduction & Neo4j Origins
(03:02) Persisting Relationships for High-Performance Queries
(04:00) Modeling Business Intent & Key Use Cases
(05:00) Fraud Detection at Scale with Graph Algorithms
(06:11) Graph-Enhanced RAG vs. Vector-Only Retrieval
(09:02) Explainability & Drill-Down Evaluation in RAG
(13:05) Fusing Structured & Unstructured Data for Context
(15:00) MCP for Developer Productivity: Schema-to-Code & API Wrapping
(21:16) Security & Sandboxing Best Practices for MCP
(29:08) MCP Server Recommendations & Outro

Join the AI Native Dev Community on Discord: https://tessl.co/4ghikjh
Ask us questions: [email protected]

  continue reading

Kapitel

1. Trailer (00:00:00)

2. Introduction & Neo4j Origins (00:01:03)

3. Persisting Relationships for High-Performance Queries (00:03:02)

4. Modeling Business Intent & Key Use Cases (00:04:00)

5. Fraud Detection at Scale with Graph Algorithms (00:05:00)

6. Graph-Enhanced RAG vs. Vector-Only Retrieval (00:06:11)

7. Explainability & Drill-Down Evaluation in RAG (00:09:02)

8. Fusing Structured & Unstructured Data for Context (00:13:05)

9. MCP for Developer Productivity: Schema-to-Code & API Wrapping (00:15:00)

10. Security & Sandboxing Best Practices for MCP (00:21:57)

11. MCP Server Recommendations & Outro (00:29:49)

74 Episoden

ทุกตอน

×
 
Loading …

Willkommen auf Player FM!

Player FM scannt gerade das Web nach Podcasts mit hoher Qualität, die du genießen kannst. Es ist die beste Podcast-App und funktioniert auf Android, iPhone und im Web. Melde dich an, um Abos geräteübergreifend zu synchronisieren.

 

Kurzanleitung

Hören Sie sich diese Show an, während Sie die Gegend erkunden
Abspielen