Artwork

Inhalt bereitgestellt von HackerNoon. Alle Podcast-Inhalte, einschließlich Episoden, Grafiken und Podcast-Beschreibungen, werden direkt von HackerNoon oder seinem Podcast-Plattformpartner hochgeladen und bereitgestellt. Wenn Sie glauben, dass jemand Ihr urheberrechtlich geschütztes Werk ohne Ihre Erlaubnis nutzt, können Sie dem hier beschriebenen Verfahren folgen https://de.player.fm/legal.
Player FM - Podcast-App
Gehen Sie mit der App Player FM offline!

Improving Deep Learning with Lorentzian Geometry: Results from LHIER Experiments

20:17
 
Teilen
 

Manage episode 516345908 series 3474385
Inhalt bereitgestellt von HackerNoon. Alle Podcast-Inhalte, einschließlich Episoden, Grafiken und Podcast-Beschreibungen, werden direkt von HackerNoon oder seinem Podcast-Plattformpartner hochgeladen und bereitgestellt. Wenn Sie glauben, dass jemand Ihr urheberrechtlich geschütztes Werk ohne Ihre Erlaubnis nutzt, können Sie dem hier beschriebenen Verfahren folgen https://de.player.fm/legal.

This story was originally published on HackerNoon at: https://hackernoon.com/improving-deep-learning-with-lorentzian-geometry-results-from-lhier-experiments.
With improved accuracy, stability, and speed of training, new Lorentz hyperbolic approaches (LHIER+) improve AI performance on classification and hierarchy task
Check more stories related to tech-stories at: https://hackernoon.com/c/tech-stories. You can also check exclusive content about #hyperbolic-deep-learning, #riemannian-optimization, #lorentz-manifold, #metric-learning, #curvature-learning, #computer-vision-architectures, #hyperbolic-neural-networks, #lorentz-space-neural-networks, and more.
This story was written by: @hyperbole. Learn more about this writer by checking @hyperbole's about page, and for more stories, please visit hackernoon.com.
This study proposes a whole set of enhancements for hyperbolic deep learning in computer vision, which have been verified by conducting extensive experiments on conventional classification tasks and hierarchical metric learning. An effective convolutional layer, a resilient curvature learning schema, maximum distance rescaling for numerical stability, and a Riemannian AdamW optimizer are among the suggested techniques that are included into a Lorentz-based model (LHIER+). With greater Recall@K scores, LHIER+ performs better on hierarchical metric learning benchmarks (CUB, Cars, SOP).

  continue reading

364 Episoden

Artwork
iconTeilen
 
Manage episode 516345908 series 3474385
Inhalt bereitgestellt von HackerNoon. Alle Podcast-Inhalte, einschließlich Episoden, Grafiken und Podcast-Beschreibungen, werden direkt von HackerNoon oder seinem Podcast-Plattformpartner hochgeladen und bereitgestellt. Wenn Sie glauben, dass jemand Ihr urheberrechtlich geschütztes Werk ohne Ihre Erlaubnis nutzt, können Sie dem hier beschriebenen Verfahren folgen https://de.player.fm/legal.

This story was originally published on HackerNoon at: https://hackernoon.com/improving-deep-learning-with-lorentzian-geometry-results-from-lhier-experiments.
With improved accuracy, stability, and speed of training, new Lorentz hyperbolic approaches (LHIER+) improve AI performance on classification and hierarchy task
Check more stories related to tech-stories at: https://hackernoon.com/c/tech-stories. You can also check exclusive content about #hyperbolic-deep-learning, #riemannian-optimization, #lorentz-manifold, #metric-learning, #curvature-learning, #computer-vision-architectures, #hyperbolic-neural-networks, #lorentz-space-neural-networks, and more.
This story was written by: @hyperbole. Learn more about this writer by checking @hyperbole's about page, and for more stories, please visit hackernoon.com.
This study proposes a whole set of enhancements for hyperbolic deep learning in computer vision, which have been verified by conducting extensive experiments on conventional classification tasks and hierarchical metric learning. An effective convolutional layer, a resilient curvature learning schema, maximum distance rescaling for numerical stability, and a Riemannian AdamW optimizer are among the suggested techniques that are included into a Lorentz-based model (LHIER+). With greater Recall@K scores, LHIER+ performs better on hierarchical metric learning benchmarks (CUB, Cars, SOP).

  continue reading

364 Episoden

همه قسمت ها

×
 
Loading …

Willkommen auf Player FM!

Player FM scannt gerade das Web nach Podcasts mit hoher Qualität, die du genießen kannst. Es ist die beste Podcast-App und funktioniert auf Android, iPhone und im Web. Melde dich an, um Abos geräteübergreifend zu synchronisieren.

 

Kurzanleitung

Hören Sie sich diese Show an, während Sie die Gegend erkunden
Abspielen