Artwork

Inhalt bereitgestellt von Richard Seidl - Experte für Software-Entwicklung und Programmierung and Richard Seidl - Experte für Software-Entwicklung. Alle Podcast-Inhalte, einschließlich Episoden, Grafiken und Podcast-Beschreibungen, werden direkt von Richard Seidl - Experte für Software-Entwicklung und Programmierung and Richard Seidl - Experte für Software-Entwicklung oder seinem Podcast-Plattformpartner hochgeladen und bereitgestellt. Wenn Sie glauben, dass jemand Ihr urheberrechtlich geschütztes Werk ohne Ihre Erlaubnis nutzt, können Sie dem hier beschriebenen Verfahren folgen https://de.player.fm/legal.
Player FM - Podcast-App
Gehen Sie mit der App Player FM offline!

Acceptance test-driven LLM development - David Faragó

29:34
 
Teilen
 

Manage episode 425476502 series 3466870
Inhalt bereitgestellt von Richard Seidl - Experte für Software-Entwicklung und Programmierung and Richard Seidl - Experte für Software-Entwicklung. Alle Podcast-Inhalte, einschließlich Episoden, Grafiken und Podcast-Beschreibungen, werden direkt von Richard Seidl - Experte für Software-Entwicklung und Programmierung and Richard Seidl - Experte für Software-Entwicklung oder seinem Podcast-Plattformpartner hochgeladen und bereitgestellt. Wenn Sie glauben, dass jemand Ihr urheberrechtlich geschütztes Werk ohne Ihre Erlaubnis nutzt, können Sie dem hier beschriebenen Verfahren folgen https://de.player.fm/legal.
Wie ATDD bei der LLM-Entwicklung unterstützt

"Das ist relativ anspruchsvoll. Letzten Endes haben wir ein paar Komponenten. Wir machen zuerst Speech-to-Text und dann auf reiner Textbasis benutzen wir ein Language-Model." - David Faragó

Vorab: Entschuldigt die schlechte Audio-Qualität, das ist uns leider erst im Nachgang aufgefallen. Ich hoffe, der Inhalt tröstet Euch darüber hinweg :-) Die Entwicklung von Large Language Models (LLMs) und die Rolle von Acceptance Test Driven Development (ATDD) sind zentrale Themen in der KI-Entwicklung. David, Experte in der Entwicklung und Qualitätssicherung von KI-basierten Telefon-Bots für Arztpraxen, teilt seine Erfahrungen und Einblicke in diesen Prozess. Die Herausforderungen und Lösungsansätze beim Trainieren und Testen von LLMs, einschließlich der Nutzung von Prompt Engineering und Fine Tuning, werden beleuchtet. Besonders bemerkenswert ist der Ansatz, ATDD-Methoden auf LLM-Entwicklungen anzuwenden, um die Qualität und Effektivität der Modelle zu verbessern. Ein weiterer Fokus liegt auf dem CPMAI-Prozess, der eine moderne Herangehensweise an die Entwicklung und Implementierung von KI-Projekten darstellt.

David ist Deep-Learning-Engineer bei mediform, spezialisiert auf Fine-Tuning von Large-Language-Models, Prompt-Engineering und Microservices. Nebenbei leitet er QPR Technologies, ein Beratungsunternehmen für innovative Qualitätssicherung, und ist Mitglied des Leitungsgremiums der GI-Fachgruppe Test, Analyse und Verifikation.

Themen im Podcast:

  • Die neuen Horizonte der KI-Entwicklung
  • Die Strategie hinter dem Erfolg: Entwicklung und Testing
  • Von Theorie zur Praxis: Acceptance Test Driven LLM Development
  • Die Rolle von CPMAI im Entwicklungszyklus
  • Die Zukunft der KI-Entwicklung

Werde jetzt Teil der Podcast-Community und hol Dir exklusive Vorteile: https://swt.fm/com

Kontakt zu David:

Die Podcast-Website: https://www.software-testing.fm

Danke an die Community-Partner des Podcasts:

Credits:

  continue reading

Kapitel

1. Willkommen (00:00:00)

2. Die Praxis von LLM im Einsatz für Telefon-Bots (00:02:21)

3. Herausforderungen und Lösungsansätze in der LLM-Entwicklung (00:05:08)

4. Einführung in das Acceptance Test-Driven LLM Development (00:11:29)

5. Der Zyklus der Dialoganalyse und Modellverbesserung (00:14:53)

6. Integration von CPMAI und Machine Learning Best Practices (00:20:07)

7. Einführung in Acceptance Test-Driven LLM-Entwicklung (00:25:14)

107 Episoden

Artwork
iconTeilen
 
Manage episode 425476502 series 3466870
Inhalt bereitgestellt von Richard Seidl - Experte für Software-Entwicklung und Programmierung and Richard Seidl - Experte für Software-Entwicklung. Alle Podcast-Inhalte, einschließlich Episoden, Grafiken und Podcast-Beschreibungen, werden direkt von Richard Seidl - Experte für Software-Entwicklung und Programmierung and Richard Seidl - Experte für Software-Entwicklung oder seinem Podcast-Plattformpartner hochgeladen und bereitgestellt. Wenn Sie glauben, dass jemand Ihr urheberrechtlich geschütztes Werk ohne Ihre Erlaubnis nutzt, können Sie dem hier beschriebenen Verfahren folgen https://de.player.fm/legal.
Wie ATDD bei der LLM-Entwicklung unterstützt

"Das ist relativ anspruchsvoll. Letzten Endes haben wir ein paar Komponenten. Wir machen zuerst Speech-to-Text und dann auf reiner Textbasis benutzen wir ein Language-Model." - David Faragó

Vorab: Entschuldigt die schlechte Audio-Qualität, das ist uns leider erst im Nachgang aufgefallen. Ich hoffe, der Inhalt tröstet Euch darüber hinweg :-) Die Entwicklung von Large Language Models (LLMs) und die Rolle von Acceptance Test Driven Development (ATDD) sind zentrale Themen in der KI-Entwicklung. David, Experte in der Entwicklung und Qualitätssicherung von KI-basierten Telefon-Bots für Arztpraxen, teilt seine Erfahrungen und Einblicke in diesen Prozess. Die Herausforderungen und Lösungsansätze beim Trainieren und Testen von LLMs, einschließlich der Nutzung von Prompt Engineering und Fine Tuning, werden beleuchtet. Besonders bemerkenswert ist der Ansatz, ATDD-Methoden auf LLM-Entwicklungen anzuwenden, um die Qualität und Effektivität der Modelle zu verbessern. Ein weiterer Fokus liegt auf dem CPMAI-Prozess, der eine moderne Herangehensweise an die Entwicklung und Implementierung von KI-Projekten darstellt.

David ist Deep-Learning-Engineer bei mediform, spezialisiert auf Fine-Tuning von Large-Language-Models, Prompt-Engineering und Microservices. Nebenbei leitet er QPR Technologies, ein Beratungsunternehmen für innovative Qualitätssicherung, und ist Mitglied des Leitungsgremiums der GI-Fachgruppe Test, Analyse und Verifikation.

Themen im Podcast:

  • Die neuen Horizonte der KI-Entwicklung
  • Die Strategie hinter dem Erfolg: Entwicklung und Testing
  • Von Theorie zur Praxis: Acceptance Test Driven LLM Development
  • Die Rolle von CPMAI im Entwicklungszyklus
  • Die Zukunft der KI-Entwicklung

Werde jetzt Teil der Podcast-Community und hol Dir exklusive Vorteile: https://swt.fm/com

Kontakt zu David:

Die Podcast-Website: https://www.software-testing.fm

Danke an die Community-Partner des Podcasts:

Credits:

  continue reading

Kapitel

1. Willkommen (00:00:00)

2. Die Praxis von LLM im Einsatz für Telefon-Bots (00:02:21)

3. Herausforderungen und Lösungsansätze in der LLM-Entwicklung (00:05:08)

4. Einführung in das Acceptance Test-Driven LLM Development (00:11:29)

5. Der Zyklus der Dialoganalyse und Modellverbesserung (00:14:53)

6. Integration von CPMAI und Machine Learning Best Practices (00:20:07)

7. Einführung in Acceptance Test-Driven LLM-Entwicklung (00:25:14)

107 Episoden

Alle Folgen

×
 
Loading …

Willkommen auf Player FM!

Player FM scannt gerade das Web nach Podcasts mit hoher Qualität, die du genießen kannst. Es ist die beste Podcast-App und funktioniert auf Android, iPhone und im Web. Melde dich an, um Abos geräteübergreifend zu synchronisieren.

 

Kurzanleitung