Artwork

Inhalt bereitgestellt von HackerNoon. Alle Podcast-Inhalte, einschließlich Episoden, Grafiken und Podcast-Beschreibungen, werden direkt von HackerNoon oder seinem Podcast-Plattformpartner hochgeladen und bereitgestellt. Wenn Sie glauben, dass jemand Ihr urheberrechtlich geschütztes Werk ohne Ihre Erlaubnis nutzt, können Sie dem hier beschriebenen Verfahren folgen https://de.player.fm/legal.
Player FM - Podcast-App
Gehen Sie mit der App Player FM offline!

"We Are Very Early in Our Work With LLMs," - Prem Ramaswami, Head of Data Commons at Google

13:53
 
Teilen
 

Manage episode 513589911 series 3474148
Inhalt bereitgestellt von HackerNoon. Alle Podcast-Inhalte, einschließlich Episoden, Grafiken und Podcast-Beschreibungen, werden direkt von HackerNoon oder seinem Podcast-Plattformpartner hochgeladen und bereitgestellt. Wenn Sie glauben, dass jemand Ihr urheberrechtlich geschütztes Werk ohne Ihre Erlaubnis nutzt, können Sie dem hier beschriebenen Verfahren folgen https://de.player.fm/legal.

This story was originally published on HackerNoon at: https://hackernoon.com/we-are-very-early-in-our-work-with-llms-prem-ramaswami-head-of-data-commons-at-google.
Google's Head of Data Commons joined HackerNoon to discuss grounding AI in verifiable data, and why "we are very early with LLMs," MCP's open approach.
Check more stories related to machine-learning at: https://hackernoon.com/c/machine-learning. You can also check exclusive content about #llm, #data, #hackernoon-top-story, #interview, #work-with-llms, #data-with-llm, #accurate-data-with-llms, #datasets, and more.
This story was written by: @David. Learn more about this writer by checking @David's about page, and for more stories, please visit hackernoon.com.
Google Data Commons launched an MCP server to ground AI in verifiable public data from trusted sources like the UN, World Bank, and Census Bureau. The clever part: users' own LLMs do the translation work, so Google's compute isn't involved. Prem Ramaswami argues we're still "very early" with LLMs (Google's transformer paper was only 2017) and the answer to hallucinations is "try all of the above" - combining language models with robust, auditable data sources. The service is free, integrates hundreds of datasets with transparent provenance, and chose Anthropic's open MCP standard over building proprietary infrastructure. Key challenge: expanding beyond strong US/OECD coverage to make grounded AI systems globally representative.Retry

  continue reading

379 Episoden

Artwork
iconTeilen
 
Manage episode 513589911 series 3474148
Inhalt bereitgestellt von HackerNoon. Alle Podcast-Inhalte, einschließlich Episoden, Grafiken und Podcast-Beschreibungen, werden direkt von HackerNoon oder seinem Podcast-Plattformpartner hochgeladen und bereitgestellt. Wenn Sie glauben, dass jemand Ihr urheberrechtlich geschütztes Werk ohne Ihre Erlaubnis nutzt, können Sie dem hier beschriebenen Verfahren folgen https://de.player.fm/legal.

This story was originally published on HackerNoon at: https://hackernoon.com/we-are-very-early-in-our-work-with-llms-prem-ramaswami-head-of-data-commons-at-google.
Google's Head of Data Commons joined HackerNoon to discuss grounding AI in verifiable data, and why "we are very early with LLMs," MCP's open approach.
Check more stories related to machine-learning at: https://hackernoon.com/c/machine-learning. You can also check exclusive content about #llm, #data, #hackernoon-top-story, #interview, #work-with-llms, #data-with-llm, #accurate-data-with-llms, #datasets, and more.
This story was written by: @David. Learn more about this writer by checking @David's about page, and for more stories, please visit hackernoon.com.
Google Data Commons launched an MCP server to ground AI in verifiable public data from trusted sources like the UN, World Bank, and Census Bureau. The clever part: users' own LLMs do the translation work, so Google's compute isn't involved. Prem Ramaswami argues we're still "very early" with LLMs (Google's transformer paper was only 2017) and the answer to hallucinations is "try all of the above" - combining language models with robust, auditable data sources. The service is free, integrates hundreds of datasets with transparent provenance, and chose Anthropic's open MCP standard over building proprietary infrastructure. Key challenge: expanding beyond strong US/OECD coverage to make grounded AI systems globally representative.Retry

  continue reading

379 Episoden

כל הפרקים

×
 
Loading …

Willkommen auf Player FM!

Player FM scannt gerade das Web nach Podcasts mit hoher Qualität, die du genießen kannst. Es ist die beste Podcast-App und funktioniert auf Android, iPhone und im Web. Melde dich an, um Abos geräteübergreifend zu synchronisieren.

 

Kurzanleitung

Hören Sie sich diese Show an, während Sie die Gegend erkunden
Abspielen