Gehen Sie mit der App Player FM offline!
Generalizing Sparse Spectral Training Across Euclidean and Hyperbolic Architectures
Manage episode 516831581 series 3474148
This story was originally published on HackerNoon at: https://hackernoon.com/generalizing-sparse-spectral-training-across-euclidean-and-hyperbolic-architectures.
Sparse Spectral Training boosts transformer stability and efficiency, outperforming LoRA and ReLoRA across neural network architectures.
Check more stories related to machine-learning at: https://hackernoon.com/c/machine-learning. You can also check exclusive content about #neural-networks, #sparse-spectral-training, #neural-network-optimization, #memory-efficient-ai-training, #hyperbolic-neural-networks, #efficient-model-pretraining, #singular-value-decomposition, #low-rank-adaptation, and more.
This story was written by: @hyperbole. Learn more about this writer by checking @hyperbole's about page, and for more stories, please visit hackernoon.com.
Sparse Spectral Training (SST) introduces a low-rank optimization technique that enhances both Euclidean and hyperbolic neural networks. Tested on machine translation benchmarks like IWSLT and Multi30K, SST consistently outperformed LoRA, ReLoRA*, and even full-rank training, delivering higher BLEU scores and preventing overfitting in high-dimensional hyperbolic spaces. The results highlight SST’s ability to generalize efficiently while maintaining stability and robustness across architectures.
416 Episoden
Manage episode 516831581 series 3474148
This story was originally published on HackerNoon at: https://hackernoon.com/generalizing-sparse-spectral-training-across-euclidean-and-hyperbolic-architectures.
Sparse Spectral Training boosts transformer stability and efficiency, outperforming LoRA and ReLoRA across neural network architectures.
Check more stories related to machine-learning at: https://hackernoon.com/c/machine-learning. You can also check exclusive content about #neural-networks, #sparse-spectral-training, #neural-network-optimization, #memory-efficient-ai-training, #hyperbolic-neural-networks, #efficient-model-pretraining, #singular-value-decomposition, #low-rank-adaptation, and more.
This story was written by: @hyperbole. Learn more about this writer by checking @hyperbole's about page, and for more stories, please visit hackernoon.com.
Sparse Spectral Training (SST) introduces a low-rank optimization technique that enhances both Euclidean and hyperbolic neural networks. Tested on machine translation benchmarks like IWSLT and Multi30K, SST consistently outperformed LoRA, ReLoRA*, and even full-rank training, delivering higher BLEU scores and preventing overfitting in high-dimensional hyperbolic spaces. The results highlight SST’s ability to generalize efficiently while maintaining stability and robustness across architectures.
416 Episoden
All episodes
×Willkommen auf Player FM!
Player FM scannt gerade das Web nach Podcasts mit hoher Qualität, die du genießen kannst. Es ist die beste Podcast-App und funktioniert auf Android, iPhone und im Web. Melde dich an, um Abos geräteübergreifend zu synchronisieren.