Artwork

Inhalt bereitgestellt von HackerNoon. Alle Podcast-Inhalte, einschließlich Episoden, Grafiken und Podcast-Beschreibungen, werden direkt von HackerNoon oder seinem Podcast-Plattformpartner hochgeladen und bereitgestellt. Wenn Sie glauben, dass jemand Ihr urheberrechtlich geschütztes Werk ohne Ihre Erlaubnis nutzt, können Sie dem hier beschriebenen Verfahren folgen https://de.player.fm/legal.
Player FM - Podcast-App
Gehen Sie mit der App Player FM offline!

AI Safety and Alignment: Could LLMs Be Penalized for Deepfakes and Misinformation?

8:10
 
Teilen
 

Manage episode 430727965 series 3474148
Inhalt bereitgestellt von HackerNoon. Alle Podcast-Inhalte, einschließlich Episoden, Grafiken und Podcast-Beschreibungen, werden direkt von HackerNoon oder seinem Podcast-Plattformpartner hochgeladen und bereitgestellt. Wenn Sie glauben, dass jemand Ihr urheberrechtlich geschütztes Werk ohne Ihre Erlaubnis nutzt, können Sie dem hier beschriebenen Verfahren folgen https://de.player.fm/legal.

This story was originally published on HackerNoon at: https://hackernoon.com/ai-safety-and-alignment-could-llms-be-penalized-for-deepfakes-and-misinformation-ecabdwv.
Penalty-tuning for LLMs: Where they can be penalized for misuses or negative outputs, within their awareness, as another channel for AI safety and alignment.
Check more stories related to machine-learning at: https://hackernoon.com/c/machine-learning. You can also check exclusive content about #ai-safety, #ai-alignment, #agi, #superintelligence, #llms, #deepfakes, #misinformation, #hackernoon-top-story, and more.
This story was written by: @davidstephen. Learn more about this writer by checking @davidstephen's about page, and for more stories, please visit hackernoon.com.
A research area for AI safety and alignment could be to seek out how some memory or compute access of large language models [LLMs] might be briefly truncated, as a form of penalty for certain outputs or misuses, including biological threats. AI should not just be able to refuse an output, acting within guardrail, but slow the next response or shut down for that user, so that it is not penalized itself. LLMs have—large—language awareness and usage awareness, these could be channels to make it know, after pre-training that it could lose something, if it outputs deepfakes, misinformation, biological threats, or if it continues to allow a misuser try different prompts without shutting down or slowing against openness to a malicious intent. This could make it safer, since it would lose something and will know it has.

  continue reading

340 Episoden

Artwork
iconTeilen
 
Manage episode 430727965 series 3474148
Inhalt bereitgestellt von HackerNoon. Alle Podcast-Inhalte, einschließlich Episoden, Grafiken und Podcast-Beschreibungen, werden direkt von HackerNoon oder seinem Podcast-Plattformpartner hochgeladen und bereitgestellt. Wenn Sie glauben, dass jemand Ihr urheberrechtlich geschütztes Werk ohne Ihre Erlaubnis nutzt, können Sie dem hier beschriebenen Verfahren folgen https://de.player.fm/legal.

This story was originally published on HackerNoon at: https://hackernoon.com/ai-safety-and-alignment-could-llms-be-penalized-for-deepfakes-and-misinformation-ecabdwv.
Penalty-tuning for LLMs: Where they can be penalized for misuses or negative outputs, within their awareness, as another channel for AI safety and alignment.
Check more stories related to machine-learning at: https://hackernoon.com/c/machine-learning. You can also check exclusive content about #ai-safety, #ai-alignment, #agi, #superintelligence, #llms, #deepfakes, #misinformation, #hackernoon-top-story, and more.
This story was written by: @davidstephen. Learn more about this writer by checking @davidstephen's about page, and for more stories, please visit hackernoon.com.
A research area for AI safety and alignment could be to seek out how some memory or compute access of large language models [LLMs] might be briefly truncated, as a form of penalty for certain outputs or misuses, including biological threats. AI should not just be able to refuse an output, acting within guardrail, but slow the next response or shut down for that user, so that it is not penalized itself. LLMs have—large—language awareness and usage awareness, these could be channels to make it know, after pre-training that it could lose something, if it outputs deepfakes, misinformation, biological threats, or if it continues to allow a misuser try different prompts without shutting down or slowing against openness to a malicious intent. This could make it safer, since it would lose something and will know it has.

  continue reading

340 Episoden

همه قسمت ها

×
 
Loading …

Willkommen auf Player FM!

Player FM scannt gerade das Web nach Podcasts mit hoher Qualität, die du genießen kannst. Es ist die beste Podcast-App und funktioniert auf Android, iPhone und im Web. Melde dich an, um Abos geräteübergreifend zu synchronisieren.

 

Kurzanleitung

Hören Sie sich diese Show an, während Sie die Gegend erkunden
Abspielen