Artwork

Inhalt bereitgestellt von Ing. Madeleine Mickeleit. Alle Podcast-Inhalte, einschließlich Episoden, Grafiken und Podcast-Beschreibungen, werden direkt von Ing. Madeleine Mickeleit oder seinem Podcast-Plattformpartner hochgeladen und bereitgestellt. Wenn Sie glauben, dass jemand Ihr urheberrechtlich geschütztes Werk ohne Ihre Erlaubnis nutzt, können Sie dem hier beschriebenen Verfahren folgen https://de.player.fm/legal.
Player FM - Podcast-App
Gehen Sie mit der App Player FM offline!

#177 | (EN) Lifetime Monitoring: KNF & b.telligent digitize testing | b.telligent & KNF

35:29
 
Teilen
 

Manage episode 494783552 series 2705853
Inhalt bereitgestellt von Ing. Madeleine Mickeleit. Alle Podcast-Inhalte, einschließlich Episoden, Grafiken und Podcast-Beschreibungen, werden direkt von Ing. Madeleine Mickeleit oder seinem Podcast-Plattformpartner hochgeladen und bereitgestellt. Wenn Sie glauben, dass jemand Ihr urheberrechtlich geschütztes Werk ohne Ihre Erlaubnis nutzt, können Sie dem hier beschriebenen Verfahren folgen https://de.player.fm/legal.

www.iotusecase.com
#PredictiveMaintenance #EdgeComputing #CloudTransformation

In Episode 177 of the IoT Use Case Podcast, host Ing. Madeleine Mickeleit speaks with Soroush Khandouzi, Cloud Solution Engineer at KNF, and Florian Stein, Domain Lead for Cloud Transformation and Data Infrastructure at b.telligent.

The focus is on a joint IIoT project for pump lifetime monitoring, showing how traditional mechanical engineering companies are using intelligent data to future-proof their products – from edge integration to a scalable cloud setup.

Podcast Summary

Lifetime monitoring, predictive maintenance, and edge integration – how KNF is driving digitalization in mechanical engineering

This episode explores a real-world digitalization project by pump manufacturer KNF, developed together with IoT partner b.telligent. The goal: replace manual testing and documentation with an automated system for long-term pump monitoring – powered by an edge-to-cloud architecture based on Azure IoT and custom-built Data Acquisition Controllers (DAC).

The challenge:
Until now, key parameters like pressure, temperature, and current were recorded manually – sometimes daily, and over several years. With four production sites worldwide, fragmented systems made consistent evaluation nearly impossible.

The solution:
A scalable IoT infrastructure built on Azure IoT Edge, near-real-time data transmission, a burst mode for high-frequency measurements (up to 10 kHz), and visualization in Grafana. In addition to automating centralized testing for more than 1,500 pumps, the system enables cross-site monitoring, AI-driven analysis, and predictive maintenance.

The key insight:
Data is not just collected – it’s made actionable in real time, enabling faster development cycles, higher product quality, and entirely new service offerings.

This episode is a must-listen for anyone looking to scale IIoT projects – from R&D to testing and production.

👉 Tune in and discover practical best practices.

-----
Relevante Folgenlinks:
Madeleine (https://www.linkedin.com/in/madeleine-mickeleit/)
Florian (https://www.linkedin.com/in/florian-stein-33692617b/)
Soroush (https://www.linkedin.com/in/soroush-khandouzi/)

Jetzt IoT Use Case auf LinkedIn folgen

1x monatlich IoT Use Case Update erhalten

  continue reading

184 Episoden

Artwork
iconTeilen
 
Manage episode 494783552 series 2705853
Inhalt bereitgestellt von Ing. Madeleine Mickeleit. Alle Podcast-Inhalte, einschließlich Episoden, Grafiken und Podcast-Beschreibungen, werden direkt von Ing. Madeleine Mickeleit oder seinem Podcast-Plattformpartner hochgeladen und bereitgestellt. Wenn Sie glauben, dass jemand Ihr urheberrechtlich geschütztes Werk ohne Ihre Erlaubnis nutzt, können Sie dem hier beschriebenen Verfahren folgen https://de.player.fm/legal.

www.iotusecase.com
#PredictiveMaintenance #EdgeComputing #CloudTransformation

In Episode 177 of the IoT Use Case Podcast, host Ing. Madeleine Mickeleit speaks with Soroush Khandouzi, Cloud Solution Engineer at KNF, and Florian Stein, Domain Lead for Cloud Transformation and Data Infrastructure at b.telligent.

The focus is on a joint IIoT project for pump lifetime monitoring, showing how traditional mechanical engineering companies are using intelligent data to future-proof their products – from edge integration to a scalable cloud setup.

Podcast Summary

Lifetime monitoring, predictive maintenance, and edge integration – how KNF is driving digitalization in mechanical engineering

This episode explores a real-world digitalization project by pump manufacturer KNF, developed together with IoT partner b.telligent. The goal: replace manual testing and documentation with an automated system for long-term pump monitoring – powered by an edge-to-cloud architecture based on Azure IoT and custom-built Data Acquisition Controllers (DAC).

The challenge:
Until now, key parameters like pressure, temperature, and current were recorded manually – sometimes daily, and over several years. With four production sites worldwide, fragmented systems made consistent evaluation nearly impossible.

The solution:
A scalable IoT infrastructure built on Azure IoT Edge, near-real-time data transmission, a burst mode for high-frequency measurements (up to 10 kHz), and visualization in Grafana. In addition to automating centralized testing for more than 1,500 pumps, the system enables cross-site monitoring, AI-driven analysis, and predictive maintenance.

The key insight:
Data is not just collected – it’s made actionable in real time, enabling faster development cycles, higher product quality, and entirely new service offerings.

This episode is a must-listen for anyone looking to scale IIoT projects – from R&D to testing and production.

👉 Tune in and discover practical best practices.

-----
Relevante Folgenlinks:
Madeleine (https://www.linkedin.com/in/madeleine-mickeleit/)
Florian (https://www.linkedin.com/in/florian-stein-33692617b/)
Soroush (https://www.linkedin.com/in/soroush-khandouzi/)

Jetzt IoT Use Case auf LinkedIn folgen

1x monatlich IoT Use Case Update erhalten

  continue reading

184 Episoden

Kaikki jaksot

×
 
Loading …

Willkommen auf Player FM!

Player FM scannt gerade das Web nach Podcasts mit hoher Qualität, die du genießen kannst. Es ist die beste Podcast-App und funktioniert auf Android, iPhone und im Web. Melde dich an, um Abos geräteübergreifend zu synchronisieren.

 

Kurzanleitung

Hören Sie sich diese Show an, während Sie die Gegend erkunden
Abspielen