Artwork

Inhalt bereitgestellt von The Data Flowcast. Alle Podcast-Inhalte, einschließlich Episoden, Grafiken und Podcast-Beschreibungen, werden direkt von The Data Flowcast oder seinem Podcast-Plattformpartner hochgeladen und bereitgestellt. Wenn Sie glauben, dass jemand Ihr urheberrechtlich geschütztes Werk ohne Ihre Erlaubnis nutzt, können Sie dem hier beschriebenen Verfahren folgen https://de.player.fm/legal.
Player FM - Podcast-App
Gehen Sie mit der App Player FM offline!

Inside Modern Data Infrastructure at Massdriver with Cory O’Daniel and Jake Ferriero

31:24
 
Teilen
 

Manage episode 497520222 series 2948506
Inhalt bereitgestellt von The Data Flowcast. Alle Podcast-Inhalte, einschließlich Episoden, Grafiken und Podcast-Beschreibungen, werden direkt von The Data Flowcast oder seinem Podcast-Plattformpartner hochgeladen und bereitgestellt. Wenn Sie glauben, dass jemand Ihr urheberrechtlich geschütztes Werk ohne Ihre Erlaubnis nutzt, können Sie dem hier beschriebenen Verfahren folgen https://de.player.fm/legal.

Managing modern data platforms means navigating a web of complex infrastructure, competing team needs and evolving security standards. For data teams to truly thrive, infrastructure must become both accessible and compliant without sacrificing velocity or reliability.

In this episode, we’re joined by Cory O’Daniel, CEO and Co-Founder at Massdriver, and Jacob Ferriero, Senior Software Engineer at Astronomer, to unpack what it takes to make data platform engineering scalable, sustainable and secure. They share lessons from years of experience working with DevOps, ML teams and platform engineers and discuss how Airflow fits into the orchestration layer of today’s data stacks.

Key Takeaways:

(03:27) Making infrastructure accessible without deep ops knowledge.

(07:23) Distinct personas and responsibilities across data teams.

(09:53) Infrastructure hurdles specific to ML workloads.

(11:13) Compliance and governance shaping platform design.

(13:27) Tooling mismatches between teams cause friction.

(15:13) Airflow’s orchestration role within broader system architecture.

(22:10) Creating reusable infrastructure patterns for consistency.

(24:13) Enabling secure access without slowing down development.

(26:55) Opportunities to improve Airflow with event-driven and reliability tooling.

Resources Mentioned:

Cory O’Daniel

https://www.linkedin.com/in/coryodaniel/

Massdriver | LinkedIn

https://www.linkedin.com/company/massdriver/

Massdriver | Website

https://www.massdriver.cloud/

Jacob Ferriero

https://www.linkedin.com/in/jacob-ferriero/

Astronomer

https://www.linkedin.com/company/astronomer/

Apache Airflow

https://airflow.apache.org/

Prequel

https://www.prequel.co/

Thanks for listening to “The Data Flowcast: Mastering Apache Airflow® for Data Engineering and AI.” If you enjoyed this episode, please leave a 5-star review to help get the word out about the show. And be sure to subscribe so you never miss any of the insightful conversations.

#AI #Automation #Airflow #MachineLearning

  continue reading

70 Episoden

Artwork
iconTeilen
 
Manage episode 497520222 series 2948506
Inhalt bereitgestellt von The Data Flowcast. Alle Podcast-Inhalte, einschließlich Episoden, Grafiken und Podcast-Beschreibungen, werden direkt von The Data Flowcast oder seinem Podcast-Plattformpartner hochgeladen und bereitgestellt. Wenn Sie glauben, dass jemand Ihr urheberrechtlich geschütztes Werk ohne Ihre Erlaubnis nutzt, können Sie dem hier beschriebenen Verfahren folgen https://de.player.fm/legal.

Managing modern data platforms means navigating a web of complex infrastructure, competing team needs and evolving security standards. For data teams to truly thrive, infrastructure must become both accessible and compliant without sacrificing velocity or reliability.

In this episode, we’re joined by Cory O’Daniel, CEO and Co-Founder at Massdriver, and Jacob Ferriero, Senior Software Engineer at Astronomer, to unpack what it takes to make data platform engineering scalable, sustainable and secure. They share lessons from years of experience working with DevOps, ML teams and platform engineers and discuss how Airflow fits into the orchestration layer of today’s data stacks.

Key Takeaways:

(03:27) Making infrastructure accessible without deep ops knowledge.

(07:23) Distinct personas and responsibilities across data teams.

(09:53) Infrastructure hurdles specific to ML workloads.

(11:13) Compliance and governance shaping platform design.

(13:27) Tooling mismatches between teams cause friction.

(15:13) Airflow’s orchestration role within broader system architecture.

(22:10) Creating reusable infrastructure patterns for consistency.

(24:13) Enabling secure access without slowing down development.

(26:55) Opportunities to improve Airflow with event-driven and reliability tooling.

Resources Mentioned:

Cory O’Daniel

https://www.linkedin.com/in/coryodaniel/

Massdriver | LinkedIn

https://www.linkedin.com/company/massdriver/

Massdriver | Website

https://www.massdriver.cloud/

Jacob Ferriero

https://www.linkedin.com/in/jacob-ferriero/

Astronomer

https://www.linkedin.com/company/astronomer/

Apache Airflow

https://airflow.apache.org/

Prequel

https://www.prequel.co/

Thanks for listening to “The Data Flowcast: Mastering Apache Airflow® for Data Engineering and AI.” If you enjoyed this episode, please leave a 5-star review to help get the word out about the show. And be sure to subscribe so you never miss any of the insightful conversations.

#AI #Automation #Airflow #MachineLearning

  continue reading

70 Episoden

Alle episoder

×
 
Loading …

Willkommen auf Player FM!

Player FM scannt gerade das Web nach Podcasts mit hoher Qualität, die du genießen kannst. Es ist die beste Podcast-App und funktioniert auf Android, iPhone und im Web. Melde dich an, um Abos geräteübergreifend zu synchronisieren.

 

Kurzanleitung

Hören Sie sich diese Show an, während Sie die Gegend erkunden
Abspielen