Artwork

Inhalt bereitgestellt von Nico Kreiling. Alle Podcast-Inhalte, einschließlich Episoden, Grafiken und Podcast-Beschreibungen, werden direkt von Nico Kreiling oder seinem Podcast-Plattformpartner hochgeladen und bereitgestellt. Wenn Sie glauben, dass jemand Ihr urheberrechtlich geschütztes Werk ohne Ihre Erlaubnis nutzt, können Sie dem hier beschriebenen Verfahren folgen https://de.player.fm/legal.
Player FM - Podcast-App
Gehen Sie mit der App Player FM offline!

#29 Recommender Systems

2:09:11
 
Teilen
 

Manage episode 267083508 series 2300648
Inhalt bereitgestellt von Nico Kreiling. Alle Podcast-Inhalte, einschließlich Episoden, Grafiken und Podcast-Beschreibungen, werden direkt von Nico Kreiling oder seinem Podcast-Plattformpartner hochgeladen und bereitgestellt. Wenn Sie glauben, dass jemand Ihr urheberrechtlich geschütztes Werk ohne Ihre Erlaubnis nutzt, können Sie dem hier beschriebenen Verfahren folgen https://de.player.fm/legal.

Recommendations, also Empfehlungen, sind mindestens so alt wie das Orakel von Delphi und der Hauptbestand zahlreicher Dienstleistungsberufe. Recomendation Systems hingegen sind ein spezieller Bereich des Information Retrieval und erst durch Amazon, Netflix und Spotify wirklich populär geworden. In dieser ausführlichen Techtiefenfolge erklärt Marcel Kurovski mit zahlreichen Beispielen das wesentliche Vorgehen dieser “Informationsaggregationsmaschinen”, welche von Collaborative Filtering über Matrixfaktorisierung bis zu Deep Learning reichen. Wir sprechen über die unterschiedlichen Stufen von Personalisierung und worin der Unterschied zur Suche besteht. Die Vor- und Nachteile von Relevanz als wichtigste Metrik für Recommender Systems kommen zur Sprache, genauso wie alternative Metriken wie Diversität, Novelty oder Robustheit, welche gerade zuletzt größeres Interesse erfahren. Marcel erzählt zudem einige Anekdoten aus der Geschichte der Recommender Systems und gibt einen Ausblick auf aktuelle Forschung und zukünftige Entwicklungen.

Links:

  continue reading

Kapitel

1. Zu Gast: Marcel Kurovski (00:01:12)

2. Recommendation Systems (00:07:33)

3. Collaborative Filtering (00:22:08)

4. Suche vs Recomendations (00:41:12)

5. Regression vs Rangfolge (00:46:55)

6. Netflix Price (00:53:13)

7. Learning2Rank und Matrix Decomposition (00:58:03)

8. Context (01:10:21)

9. Stufen der Personalisierung (01:23:36)

10. Relevanz und Ranking Metriken (01:31:04)

11. Weitere Zielkriterien (01:36:03)

12. Online vs Offline Metriken (01:42:47)

13. Aktuelle Forschung und Kritik (01:47:48)

14. Ausblick für Recommender (01:52:15)

15. LightFM und Empfehlungen (02:01:01)

16. Verabschiedung (02:08:42)

45 Episoden

Artwork

#29 Recommender Systems

Techtiefen

27 subscribers

published

iconTeilen
 
Manage episode 267083508 series 2300648
Inhalt bereitgestellt von Nico Kreiling. Alle Podcast-Inhalte, einschließlich Episoden, Grafiken und Podcast-Beschreibungen, werden direkt von Nico Kreiling oder seinem Podcast-Plattformpartner hochgeladen und bereitgestellt. Wenn Sie glauben, dass jemand Ihr urheberrechtlich geschütztes Werk ohne Ihre Erlaubnis nutzt, können Sie dem hier beschriebenen Verfahren folgen https://de.player.fm/legal.

Recommendations, also Empfehlungen, sind mindestens so alt wie das Orakel von Delphi und der Hauptbestand zahlreicher Dienstleistungsberufe. Recomendation Systems hingegen sind ein spezieller Bereich des Information Retrieval und erst durch Amazon, Netflix und Spotify wirklich populär geworden. In dieser ausführlichen Techtiefenfolge erklärt Marcel Kurovski mit zahlreichen Beispielen das wesentliche Vorgehen dieser “Informationsaggregationsmaschinen”, welche von Collaborative Filtering über Matrixfaktorisierung bis zu Deep Learning reichen. Wir sprechen über die unterschiedlichen Stufen von Personalisierung und worin der Unterschied zur Suche besteht. Die Vor- und Nachteile von Relevanz als wichtigste Metrik für Recommender Systems kommen zur Sprache, genauso wie alternative Metriken wie Diversität, Novelty oder Robustheit, welche gerade zuletzt größeres Interesse erfahren. Marcel erzählt zudem einige Anekdoten aus der Geschichte der Recommender Systems und gibt einen Ausblick auf aktuelle Forschung und zukünftige Entwicklungen.

Links:

  continue reading

Kapitel

1. Zu Gast: Marcel Kurovski (00:01:12)

2. Recommendation Systems (00:07:33)

3. Collaborative Filtering (00:22:08)

4. Suche vs Recomendations (00:41:12)

5. Regression vs Rangfolge (00:46:55)

6. Netflix Price (00:53:13)

7. Learning2Rank und Matrix Decomposition (00:58:03)

8. Context (01:10:21)

9. Stufen der Personalisierung (01:23:36)

10. Relevanz und Ranking Metriken (01:31:04)

11. Weitere Zielkriterien (01:36:03)

12. Online vs Offline Metriken (01:42:47)

13. Aktuelle Forschung und Kritik (01:47:48)

14. Ausblick für Recommender (01:52:15)

15. LightFM und Empfehlungen (02:01:01)

16. Verabschiedung (02:08:42)

45 Episoden

Alle Folgen

×
 
Loading …

Willkommen auf Player FM!

Player FM scannt gerade das Web nach Podcasts mit hoher Qualität, die du genießen kannst. Es ist die beste Podcast-App und funktioniert auf Android, iPhone und im Web. Melde dich an, um Abos geräteübergreifend zu synchronisieren.

 

Kurzanleitung

Hören Sie sich diese Show an, während Sie die Gegend erkunden
Abspielen