Artwork

Inhalt bereitgestellt von Adam Bien. Alle Podcast-Inhalte, einschließlich Episoden, Grafiken und Podcast-Beschreibungen, werden direkt von Adam Bien oder seinem Podcast-Plattformpartner hochgeladen und bereitgestellt. Wenn Sie glauben, dass jemand Ihr urheberrechtlich geschütztes Werk ohne Ihre Erlaubnis nutzt, können Sie dem hier beschriebenen Verfahren folgen https://de.player.fm/legal.
Player FM - Podcast-App
Gehen Sie mit der App Player FM offline!

Exploring ONNX, Embedding Models, and Retrieval Augmented Generation (RAG) with Langchain4j

1:09:00
 
Teilen
 

Manage episode 421443440 series 2469611
Inhalt bereitgestellt von Adam Bien. Alle Podcast-Inhalte, einschließlich Episoden, Grafiken und Podcast-Beschreibungen, werden direkt von Adam Bien oder seinem Podcast-Plattformpartner hochgeladen und bereitgestellt. Wenn Sie glauben, dass jemand Ihr urheberrechtlich geschütztes Werk ohne Ihre Erlaubnis nutzt, können Sie dem hier beschriebenen Verfahren folgen https://de.player.fm/legal.
An airhacks.fm conversation with Dmytro Liubarskyi (@langchain4j) about:
Dmytro previously on "#285 How LangChain4j Happened", discussion about ONNX format and runtime for running neural network models in Java, using langchain4j library for seamless integration and data handling, embedding models for converting text into vector representations, strategies for handling longer text inputs by splitting and averaging embeddings, overview of the retrieval augmented generation (RAG) pipeline and its components, using embeddings for query transformation, routing, and data source selection in RAG, integrating Langchain4j with quarkus and CDI for building AI-powered applications, Langchain4j provides pre-packaged ONNX models as Maven dependencies, embedding models are faster and smaller compared to full language models, possibilities of using embeddings for query expansion, summarization, and data source selection, cross-checking model outputs using embeddings or another language model, decomposing complex AI services into smaller, specialized sub-modules, injecting the right tools and data based on query classification

Dmytro Liubarskyi on twitter: @langchain4j

  continue reading

324 Episoden

Artwork
iconTeilen
 
Manage episode 421443440 series 2469611
Inhalt bereitgestellt von Adam Bien. Alle Podcast-Inhalte, einschließlich Episoden, Grafiken und Podcast-Beschreibungen, werden direkt von Adam Bien oder seinem Podcast-Plattformpartner hochgeladen und bereitgestellt. Wenn Sie glauben, dass jemand Ihr urheberrechtlich geschütztes Werk ohne Ihre Erlaubnis nutzt, können Sie dem hier beschriebenen Verfahren folgen https://de.player.fm/legal.
An airhacks.fm conversation with Dmytro Liubarskyi (@langchain4j) about:
Dmytro previously on "#285 How LangChain4j Happened", discussion about ONNX format and runtime for running neural network models in Java, using langchain4j library for seamless integration and data handling, embedding models for converting text into vector representations, strategies for handling longer text inputs by splitting and averaging embeddings, overview of the retrieval augmented generation (RAG) pipeline and its components, using embeddings for query transformation, routing, and data source selection in RAG, integrating Langchain4j with quarkus and CDI for building AI-powered applications, Langchain4j provides pre-packaged ONNX models as Maven dependencies, embedding models are faster and smaller compared to full language models, possibilities of using embeddings for query expansion, summarization, and data source selection, cross-checking model outputs using embeddings or another language model, decomposing complex AI services into smaller, specialized sub-modules, injecting the right tools and data based on query classification

Dmytro Liubarskyi on twitter: @langchain4j

  continue reading

324 Episoden

Tất cả các tập

×
 
Loading …

Willkommen auf Player FM!

Player FM scannt gerade das Web nach Podcasts mit hoher Qualität, die du genießen kannst. Es ist die beste Podcast-App und funktioniert auf Android, iPhone und im Web. Melde dich an, um Abos geräteübergreifend zu synchronisieren.

 

Kurzanleitung