Artwork

Inhalt bereitgestellt von Machine Learning Street Talk (MLST). Alle Podcast-Inhalte, einschließlich Episoden, Grafiken und Podcast-Beschreibungen, werden direkt von Machine Learning Street Talk (MLST) oder seinem Podcast-Plattformpartner hochgeladen und bereitgestellt. Wenn Sie glauben, dass jemand Ihr urheberrechtlich geschütztes Werk ohne Ihre Erlaubnis nutzt, können Sie dem hier beschriebenen Verfahren folgen https://de.player.fm/legal.
Player FM - Podcast-App
Gehen Sie mit der App Player FM offline!

Why Humans Are Still Powering AI [Sponsored]

24:19
 
Teilen
 

Manage episode 517424438 series 2803422
Inhalt bereitgestellt von Machine Learning Street Talk (MLST). Alle Podcast-Inhalte, einschließlich Episoden, Grafiken und Podcast-Beschreibungen, werden direkt von Machine Learning Street Talk (MLST) oder seinem Podcast-Plattformpartner hochgeladen und bereitgestellt. Wenn Sie glauben, dass jemand Ihr urheberrechtlich geschütztes Werk ohne Ihre Erlaubnis nutzt, können Sie dem hier beschriebenen Verfahren folgen https://de.player.fm/legal.

Ever wonder where AI models actually get their "intelligence"? We reveal the dirty secret of Silicon Valley: behind every impressive AI system are thousands of real humans providing crucial data, feedback, and expertise.Guest: Phelim Bradley, CEO and Co-founder of ProlificPhelim Bradley runs Prolific, a platform that connects AI companies with verified human experts who help train and evaluate their models. Think of it as a sophisticated marketplace matching the right human expertise to the right AI task - whether that's doctors evaluating medical chatbots or coders reviewing AI-generated software.Prolific: https://prolific.com/?utm_source=mlsthttps://uk.linkedin.com/in/phelim-bradley-84300826The discussion dives into:**The human data pipeline**: How AI companies rely on human intelligence to train, refine, and validate their models - something rarely discussed openly**Quality over quantity**: Why paying humans well and treating them as partners (not commodities) produces better AI training data**The matching challenge**: How Prolific solves the complex problem of finding the right expert for each specific task, similar to matching Uber drivers to riders but with deep expertise requirements**Future of work**: What it means when human expertise becomes an on-demand service, and why this might actually create more opportunities rather than fewer**Geopolitical implications**: Why the centralization of AI development in US tech companies should concern Europe and the UK

  continue reading

237 Episoden

Artwork
iconTeilen
 
Manage episode 517424438 series 2803422
Inhalt bereitgestellt von Machine Learning Street Talk (MLST). Alle Podcast-Inhalte, einschließlich Episoden, Grafiken und Podcast-Beschreibungen, werden direkt von Machine Learning Street Talk (MLST) oder seinem Podcast-Plattformpartner hochgeladen und bereitgestellt. Wenn Sie glauben, dass jemand Ihr urheberrechtlich geschütztes Werk ohne Ihre Erlaubnis nutzt, können Sie dem hier beschriebenen Verfahren folgen https://de.player.fm/legal.

Ever wonder where AI models actually get their "intelligence"? We reveal the dirty secret of Silicon Valley: behind every impressive AI system are thousands of real humans providing crucial data, feedback, and expertise.Guest: Phelim Bradley, CEO and Co-founder of ProlificPhelim Bradley runs Prolific, a platform that connects AI companies with verified human experts who help train and evaluate their models. Think of it as a sophisticated marketplace matching the right human expertise to the right AI task - whether that's doctors evaluating medical chatbots or coders reviewing AI-generated software.Prolific: https://prolific.com/?utm_source=mlsthttps://uk.linkedin.com/in/phelim-bradley-84300826The discussion dives into:**The human data pipeline**: How AI companies rely on human intelligence to train, refine, and validate their models - something rarely discussed openly**Quality over quantity**: Why paying humans well and treating them as partners (not commodities) produces better AI training data**The matching challenge**: How Prolific solves the complex problem of finding the right expert for each specific task, similar to matching Uber drivers to riders but with deep expertise requirements**Future of work**: What it means when human expertise becomes an on-demand service, and why this might actually create more opportunities rather than fewer**Geopolitical implications**: Why the centralization of AI development in US tech companies should concern Europe and the UK

  continue reading

237 Episoden

Alle Folgen

×
 
Loading …

Willkommen auf Player FM!

Player FM scannt gerade das Web nach Podcasts mit hoher Qualität, die du genießen kannst. Es ist die beste Podcast-App und funktioniert auf Android, iPhone und im Web. Melde dich an, um Abos geräteübergreifend zu synchronisieren.

 

Kurzanleitung

Hören Sie sich diese Show an, während Sie die Gegend erkunden
Abspielen