Gehen Sie mit der App Player FM offline!
Patrick Lewis (Cohere) - Retrieval Augmented Generation
Manage episode 440266070 series 2803422
Dr. Patrick Lewis, who coined the term RAG (Retrieval Augmented Generation) and now works at Cohere, discusses the evolution of language models, RAG systems, and challenges in AI evaluation.
MLST is sponsored by Brave:
The Brave Search API covers over 20 billion webpages, built from scratch without Big Tech biases or the recent extortionate price hikes on search API access. Perfect for AI model training and retrieval augmented generation. Try it now - get 2,000 free queries monthly at http://brave.com/api.
Key topics covered:
- Origins and evolution of Retrieval Augmented Generation (RAG)
- Challenges in evaluating RAG systems and language models
- Human-AI collaboration in research and knowledge work
- Word embeddings and the progression to modern language models
- Dense vs sparse retrieval methods in information retrieval
The discussion also explored broader implications and applications:
- Balancing faithfulness and fluency in RAG systems
- User interface design for AI-augmented research tools
- The journey from chemistry to AI research
- Challenges in enterprise search compared to web search
- The importance of data quality in training AI models
Patrick Lewis: https://www.patricklewis.io/
Cohere Command Models, check them out - they are amazing for RAG!
https://cohere.com/command
TOC
00:00:00 1. Intro to RAG
00:05:30 2. RAG Evaluation: Poll framework & model performance
00:12:55 3. Data Quality: Cleanliness vs scale in AI training
00:15:13 4. Human-AI Collaboration: Research agents & UI design
00:22:57 5. RAG Origins: Open-domain QA to generative models
00:30:18 6. RAG Challenges: Info retrieval, tool use, faithfulness
00:42:01 7. Dense vs Sparse Retrieval: Techniques & trade-offs
00:47:02 8. RAG Applications: Grounding, attribution, hallucination prevention
00:54:04 9. UI for RAG: Human-computer interaction & model optimization
00:59:01 10. Word Embeddings: Word2Vec, GloVe, and semantic spaces
01:06:43 11. Language Model Evolution: BERT, GPT, and beyond
01:11:38 12. AI & Human Cognition: Sequential processing & chain-of-thought
Refs:
1. Retrieval Augmented Generation (RAG) paper / Patrick Lewis et al. [00:27:45]
https://arxiv.org/abs/2005.11401
2. LAMA (LAnguage Model Analysis) probe / Petroni et al. [00:26:35]
https://arxiv.org/abs/1909.01066
3. KILT (Knowledge Intensive Language Tasks) benchmark / Petroni et al. [00:27:05]
https://arxiv.org/abs/2009.02252
4. Word2Vec algorithm / Tomas Mikolov et al. [01:00:25]
https://arxiv.org/abs/1301.3781
5. GloVe (Global Vectors for Word Representation) / Pennington et al. [01:04:35]
https://nlp.stanford.edu/projects/glove/
6. BERT (Bidirectional Encoder Representations from Transformers) / Devlin et al. [01:08:00]
https://arxiv.org/abs/1810.04805
7. 'The Language Game' book / Nick Chater and Morten H. Christiansen [01:11:40]
Disclaimer: This is the sixth video from our Cohere partnership. We were not told what to say in the interview. Filmed in Seattle in June 2024.
198 Episoden
Manage episode 440266070 series 2803422
Dr. Patrick Lewis, who coined the term RAG (Retrieval Augmented Generation) and now works at Cohere, discusses the evolution of language models, RAG systems, and challenges in AI evaluation.
MLST is sponsored by Brave:
The Brave Search API covers over 20 billion webpages, built from scratch without Big Tech biases or the recent extortionate price hikes on search API access. Perfect for AI model training and retrieval augmented generation. Try it now - get 2,000 free queries monthly at http://brave.com/api.
Key topics covered:
- Origins and evolution of Retrieval Augmented Generation (RAG)
- Challenges in evaluating RAG systems and language models
- Human-AI collaboration in research and knowledge work
- Word embeddings and the progression to modern language models
- Dense vs sparse retrieval methods in information retrieval
The discussion also explored broader implications and applications:
- Balancing faithfulness and fluency in RAG systems
- User interface design for AI-augmented research tools
- The journey from chemistry to AI research
- Challenges in enterprise search compared to web search
- The importance of data quality in training AI models
Patrick Lewis: https://www.patricklewis.io/
Cohere Command Models, check them out - they are amazing for RAG!
https://cohere.com/command
TOC
00:00:00 1. Intro to RAG
00:05:30 2. RAG Evaluation: Poll framework & model performance
00:12:55 3. Data Quality: Cleanliness vs scale in AI training
00:15:13 4. Human-AI Collaboration: Research agents & UI design
00:22:57 5. RAG Origins: Open-domain QA to generative models
00:30:18 6. RAG Challenges: Info retrieval, tool use, faithfulness
00:42:01 7. Dense vs Sparse Retrieval: Techniques & trade-offs
00:47:02 8. RAG Applications: Grounding, attribution, hallucination prevention
00:54:04 9. UI for RAG: Human-computer interaction & model optimization
00:59:01 10. Word Embeddings: Word2Vec, GloVe, and semantic spaces
01:06:43 11. Language Model Evolution: BERT, GPT, and beyond
01:11:38 12. AI & Human Cognition: Sequential processing & chain-of-thought
Refs:
1. Retrieval Augmented Generation (RAG) paper / Patrick Lewis et al. [00:27:45]
https://arxiv.org/abs/2005.11401
2. LAMA (LAnguage Model Analysis) probe / Petroni et al. [00:26:35]
https://arxiv.org/abs/1909.01066
3. KILT (Knowledge Intensive Language Tasks) benchmark / Petroni et al. [00:27:05]
https://arxiv.org/abs/2009.02252
4. Word2Vec algorithm / Tomas Mikolov et al. [01:00:25]
https://arxiv.org/abs/1301.3781
5. GloVe (Global Vectors for Word Representation) / Pennington et al. [01:04:35]
https://nlp.stanford.edu/projects/glove/
6. BERT (Bidirectional Encoder Representations from Transformers) / Devlin et al. [01:08:00]
https://arxiv.org/abs/1810.04805
7. 'The Language Game' book / Nick Chater and Morten H. Christiansen [01:11:40]
Disclaimer: This is the sixth video from our Cohere partnership. We were not told what to say in the interview. Filmed in Seattle in June 2024.
198 Episoden
Alla avsnitt
×Willkommen auf Player FM!
Player FM scannt gerade das Web nach Podcasts mit hoher Qualität, die du genießen kannst. Es ist die beste Podcast-App und funktioniert auf Android, iPhone und im Web. Melde dich an, um Abos geräteübergreifend zu synchronisieren.