Artwork

Inhalt bereitgestellt von The Data Flowcast. Alle Podcast-Inhalte, einschließlich Episoden, Grafiken und Podcast-Beschreibungen, werden direkt von The Data Flowcast oder seinem Podcast-Plattformpartner hochgeladen und bereitgestellt. Wenn Sie glauben, dass jemand Ihr urheberrechtlich geschütztes Werk ohne Ihre Erlaubnis nutzt, können Sie dem hier beschriebenen Verfahren folgen https://de.player.fm/legal.
Player FM - Podcast-App
Gehen Sie mit der App Player FM offline!

Streamlining Thousands of Data Pipelines at Lyft with Yunhao Qing

19:34
 
Teilen
 

Manage episode 493031761 series 2948506
Inhalt bereitgestellt von The Data Flowcast. Alle Podcast-Inhalte, einschließlich Episoden, Grafiken und Podcast-Beschreibungen, werden direkt von The Data Flowcast oder seinem Podcast-Plattformpartner hochgeladen und bereitgestellt. Wenn Sie glauben, dass jemand Ihr urheberrechtlich geschütztes Werk ohne Ihre Erlaubnis nutzt, können Sie dem hier beschriebenen Verfahren folgen https://de.player.fm/legal.

Managing data pipelines at scale is not just a technical challenge. It is also an organizational one. At Lyft, success means empowering dozens of teams to build with autonomy while enforcing governance and best practices across thousands of workflows.

In this episode, we speak with Yunhao Qing, Software Engineer at Lyft, about building a governed data-engineering platform powered by Airflow that balances flexibility, standardization and scale.

Key Takeaways:

(03:17) Supporting internal teams with a centralized orchestration platform.

(04:54) Migrating to a managed service to reduce infrastructure overhead.

(06:04) Embedding platform-level governance into custom components.

(08:02) Consolidating and regulating the creation of custom code.

(09:48) Identifying and correcting inefficient workflow patterns.

(11:17) Replacing manual workarounds with native platform features.

(14:32) Preparing teams for major version upgrades.

(16:03) Leveraging asset-based scheduling for smarter triggers.

(18:13) Envisioning GenAI and semantic search for future productivity.

Resources Mentioned:

Yunhao Qing

https://www.linkedin.com/in/yunhao-qing

Lyft | LinkedIn

https://www.linkedin.com/company/lyft/

Lyft | Website

https://www.lyft.com/

Apache Airflow

https://airflow.apache.org/

Astronomer

https://www.astronomer.io/

Kubernetes

https://kubernetes.io/

https://www.astronomer.io/events/roadshow/london/

https://www.astronomer.io/events/roadshow/new-york/

https://www.astronomer.io/events/roadshow/sydney/

https://www.astronomer.io/events/roadshow/san-francisco/

https://www.astronomer.io/events/roadshow/chicago/

Thanks for listening to “The Data Flowcast: Mastering Apache Airflow® for Data Engineering and AI.” If you enjoyed this episode, please leave a 5-star review to help get the word out about the show. And be sure to subscribe so you never miss any of the insightful conversations.

#AI #Automation #Airflow #MachineLearning

  continue reading

70 Episoden

Artwork
iconTeilen
 
Manage episode 493031761 series 2948506
Inhalt bereitgestellt von The Data Flowcast. Alle Podcast-Inhalte, einschließlich Episoden, Grafiken und Podcast-Beschreibungen, werden direkt von The Data Flowcast oder seinem Podcast-Plattformpartner hochgeladen und bereitgestellt. Wenn Sie glauben, dass jemand Ihr urheberrechtlich geschütztes Werk ohne Ihre Erlaubnis nutzt, können Sie dem hier beschriebenen Verfahren folgen https://de.player.fm/legal.

Managing data pipelines at scale is not just a technical challenge. It is also an organizational one. At Lyft, success means empowering dozens of teams to build with autonomy while enforcing governance and best practices across thousands of workflows.

In this episode, we speak with Yunhao Qing, Software Engineer at Lyft, about building a governed data-engineering platform powered by Airflow that balances flexibility, standardization and scale.

Key Takeaways:

(03:17) Supporting internal teams with a centralized orchestration platform.

(04:54) Migrating to a managed service to reduce infrastructure overhead.

(06:04) Embedding platform-level governance into custom components.

(08:02) Consolidating and regulating the creation of custom code.

(09:48) Identifying and correcting inefficient workflow patterns.

(11:17) Replacing manual workarounds with native platform features.

(14:32) Preparing teams for major version upgrades.

(16:03) Leveraging asset-based scheduling for smarter triggers.

(18:13) Envisioning GenAI and semantic search for future productivity.

Resources Mentioned:

Yunhao Qing

https://www.linkedin.com/in/yunhao-qing

Lyft | LinkedIn

https://www.linkedin.com/company/lyft/

Lyft | Website

https://www.lyft.com/

Apache Airflow

https://airflow.apache.org/

Astronomer

https://www.astronomer.io/

Kubernetes

https://kubernetes.io/

https://www.astronomer.io/events/roadshow/london/

https://www.astronomer.io/events/roadshow/new-york/

https://www.astronomer.io/events/roadshow/sydney/

https://www.astronomer.io/events/roadshow/san-francisco/

https://www.astronomer.io/events/roadshow/chicago/

Thanks for listening to “The Data Flowcast: Mastering Apache Airflow® for Data Engineering and AI.” If you enjoyed this episode, please leave a 5-star review to help get the word out about the show. And be sure to subscribe so you never miss any of the insightful conversations.

#AI #Automation #Airflow #MachineLearning

  continue reading

70 Episoden

Alle Folgen

×
 
Loading …

Willkommen auf Player FM!

Player FM scannt gerade das Web nach Podcasts mit hoher Qualität, die du genießen kannst. Es ist die beste Podcast-App und funktioniert auf Android, iPhone und im Web. Melde dich an, um Abos geräteübergreifend zu synchronisieren.

 

Kurzanleitung

Hören Sie sich diese Show an, während Sie die Gegend erkunden
Abspielen