Artwork

Inhalt bereitgestellt von Altitude Accelerator. Alle Podcast-Inhalte, einschließlich Episoden, Grafiken und Podcast-Beschreibungen, werden direkt von Altitude Accelerator oder seinem Podcast-Plattformpartner hochgeladen und bereitgestellt. Wenn Sie glauben, dass jemand Ihr urheberrechtlich geschütztes Werk ohne Ihre Erlaubnis nutzt, können Sie dem hier beschriebenen Verfahren folgen https://de.player.fm/legal.
Player FM - Podcast-App
Gehen Sie mit der App Player FM offline!

Episode 55 Myths, Facts and the Future of LLMs with Amir Feizpour

51:28
 
Teilen
 

Manage episode 422150206 series 3447609
Inhalt bereitgestellt von Altitude Accelerator. Alle Podcast-Inhalte, einschließlich Episoden, Grafiken und Podcast-Beschreibungen, werden direkt von Altitude Accelerator oder seinem Podcast-Plattformpartner hochgeladen und bereitgestellt. Wenn Sie glauben, dass jemand Ihr urheberrechtlich geschütztes Werk ohne Ihre Erlaubnis nutzt, können Sie dem hier beschriebenen Verfahren folgen https://de.player.fm/legal.

Large Language Models (LLMs) have emerged as one of the most powerful and versatile artificial intelligence technologies of our time. By training massive neural networks on vast datasets of human-generated text, LLMs have developed an unprecedented ability to understand and generate human-like language with robust fluency and comprehension. This breakthrough has unlocked a wide range of innovative applications across industries, from content creation and language translation to conversational AI assistants and code generation.

More recently Open AI released ChatGPT 4o that they say can reason across different modalities in real time. They trained a single new model end-to-end across text, vision, and audio, meaning that all inputs and outputs are processed by the same neural network. This is still early days but this idea of developing a multi-modal model has vast potential to create much more effective outputs that can help yield better decision making.

The nascency of this technology has yet to be fully understood–language, image, audio understanding, the generation capabilities that can drive substantial productivity gains, and enable new forms of human-machine collaboration and even question which human jobs are replaceable– are still emerging.

As well, LLM technology has limitations and risks including issues of factual inaccuracies, biases inherited from training data, lack of common-sense reasoning, and pervasive potential for misuse, and more recently the data privacy implications that we’ve seen from OpenAI’s unconsented use of Scarlett Johansson’s voice.

Techniques like Retrieval Augmented Generation (RAG) are highlighted as promising approaches to enhance LLMs' knowledge grounding, improve their accuracies over time.

We welcomed Amir Feizpour, CEO and founder of AI.Science, a platform for expert-in-the-loop business workflow automation. In this episode of Tech Uncensored, we will delve into the transformative impacts of LLMs across sectors, the applications both present and future, the current challenges and risks and what does this mean to startups developing in this space.

  continue reading

83 Episoden

Artwork
iconTeilen
 
Manage episode 422150206 series 3447609
Inhalt bereitgestellt von Altitude Accelerator. Alle Podcast-Inhalte, einschließlich Episoden, Grafiken und Podcast-Beschreibungen, werden direkt von Altitude Accelerator oder seinem Podcast-Plattformpartner hochgeladen und bereitgestellt. Wenn Sie glauben, dass jemand Ihr urheberrechtlich geschütztes Werk ohne Ihre Erlaubnis nutzt, können Sie dem hier beschriebenen Verfahren folgen https://de.player.fm/legal.

Large Language Models (LLMs) have emerged as one of the most powerful and versatile artificial intelligence technologies of our time. By training massive neural networks on vast datasets of human-generated text, LLMs have developed an unprecedented ability to understand and generate human-like language with robust fluency and comprehension. This breakthrough has unlocked a wide range of innovative applications across industries, from content creation and language translation to conversational AI assistants and code generation.

More recently Open AI released ChatGPT 4o that they say can reason across different modalities in real time. They trained a single new model end-to-end across text, vision, and audio, meaning that all inputs and outputs are processed by the same neural network. This is still early days but this idea of developing a multi-modal model has vast potential to create much more effective outputs that can help yield better decision making.

The nascency of this technology has yet to be fully understood–language, image, audio understanding, the generation capabilities that can drive substantial productivity gains, and enable new forms of human-machine collaboration and even question which human jobs are replaceable– are still emerging.

As well, LLM technology has limitations and risks including issues of factual inaccuracies, biases inherited from training data, lack of common-sense reasoning, and pervasive potential for misuse, and more recently the data privacy implications that we’ve seen from OpenAI’s unconsented use of Scarlett Johansson’s voice.

Techniques like Retrieval Augmented Generation (RAG) are highlighted as promising approaches to enhance LLMs' knowledge grounding, improve their accuracies over time.

We welcomed Amir Feizpour, CEO and founder of AI.Science, a platform for expert-in-the-loop business workflow automation. In this episode of Tech Uncensored, we will delve into the transformative impacts of LLMs across sectors, the applications both present and future, the current challenges and risks and what does this mean to startups developing in this space.

  continue reading

83 Episoden

Alle Folgen

×
 
Loading …

Willkommen auf Player FM!

Player FM scannt gerade das Web nach Podcasts mit hoher Qualität, die du genießen kannst. Es ist die beste Podcast-App und funktioniert auf Android, iPhone und im Web. Melde dich an, um Abos geräteübergreifend zu synchronisieren.

 

Kurzanleitung

Hören Sie sich diese Show an, während Sie die Gegend erkunden
Abspielen