Artwork

Inhalt bereitgestellt von Paris Childress and Hop Online. Alle Podcast-Inhalte, einschließlich Episoden, Grafiken und Podcast-Beschreibungen, werden direkt von Paris Childress and Hop Online oder seinem Podcast-Plattformpartner hochgeladen und bereitgestellt. Wenn Sie glauben, dass jemand Ihr urheberrechtlich geschütztes Werk ohne Ihre Erlaubnis nutzt, können Sie dem hier beschriebenen Verfahren folgen https://de.player.fm/legal.
Player FM - Podcast-App
Gehen Sie mit der App Player FM offline!

Cracking Predictive Lifetime Value with First-Party Data and Nikolay Stefanov of Hop Online

36:25
 
Teilen
 

Manage episode 364305372 series 3362138
Inhalt bereitgestellt von Paris Childress and Hop Online. Alle Podcast-Inhalte, einschließlich Episoden, Grafiken und Podcast-Beschreibungen, werden direkt von Paris Childress and Hop Online oder seinem Podcast-Plattformpartner hochgeladen und bereitgestellt. Wenn Sie glauben, dass jemand Ihr urheberrechtlich geschütztes Werk ohne Ihre Erlaubnis nutzt, können Sie dem hier beschriebenen Verfahren folgen https://de.player.fm/legal.

🎙️ In part two of our theme, First-Party Data in Marketing, we've invited our data scientist, Nikolay Stefanov, to discuss one of the main benefits of 1PD: using it to predict customer lifetime value!

👉 Nikolay Stefanov is our Chief Data Scientist at Hop Online, working on various data science projects and primarily trying to crack predictive lifetime value, using machine learning models, and he's here to tell us all about that!

Join us on our rebranded podcast as we dive into how to build a good machine-learning model using 1PD. And discover how to accurately predict the lifetime value of new customers with this model.

🔥 With a new format and different themes, each episode provides a well-rounded perspective that includes our host's own insights. Don't miss out on the first season of our podcast!

Here are some of the key topics that Niki and Paris discussed in this episode:

• 03:33 Why you should predict customer lifetime value (pLTV)

• 05:29 When should predicting customer lifetime value be the top priority for your business

• 09:50 Google's hunger for data in the Cookiepocalypse

• 12:48 The steps to creating a machine learning (ML) model with first-party data

• 14:00 What's the key to getting started with a model predicting customer lifetime value

• 18:25 Aggregation of data for pLTV modeling

• 20:11 Different types of ML models and how Random Forest ML works

• 27:57 The final feedback loop: feeding your customers' pLTV scores back to Google Ads

  continue reading

152 Episoden

Artwork
iconTeilen
 
Manage episode 364305372 series 3362138
Inhalt bereitgestellt von Paris Childress and Hop Online. Alle Podcast-Inhalte, einschließlich Episoden, Grafiken und Podcast-Beschreibungen, werden direkt von Paris Childress and Hop Online oder seinem Podcast-Plattformpartner hochgeladen und bereitgestellt. Wenn Sie glauben, dass jemand Ihr urheberrechtlich geschütztes Werk ohne Ihre Erlaubnis nutzt, können Sie dem hier beschriebenen Verfahren folgen https://de.player.fm/legal.

🎙️ In part two of our theme, First-Party Data in Marketing, we've invited our data scientist, Nikolay Stefanov, to discuss one of the main benefits of 1PD: using it to predict customer lifetime value!

👉 Nikolay Stefanov is our Chief Data Scientist at Hop Online, working on various data science projects and primarily trying to crack predictive lifetime value, using machine learning models, and he's here to tell us all about that!

Join us on our rebranded podcast as we dive into how to build a good machine-learning model using 1PD. And discover how to accurately predict the lifetime value of new customers with this model.

🔥 With a new format and different themes, each episode provides a well-rounded perspective that includes our host's own insights. Don't miss out on the first season of our podcast!

Here are some of the key topics that Niki and Paris discussed in this episode:

• 03:33 Why you should predict customer lifetime value (pLTV)

• 05:29 When should predicting customer lifetime value be the top priority for your business

• 09:50 Google's hunger for data in the Cookiepocalypse

• 12:48 The steps to creating a machine learning (ML) model with first-party data

• 14:00 What's the key to getting started with a model predicting customer lifetime value

• 18:25 Aggregation of data for pLTV modeling

• 20:11 Different types of ML models and how Random Forest ML works

• 27:57 The final feedback loop: feeding your customers' pLTV scores back to Google Ads

  continue reading

152 Episoden

Alle episoder

×
 
Loading …

Willkommen auf Player FM!

Player FM scannt gerade das Web nach Podcasts mit hoher Qualität, die du genießen kannst. Es ist die beste Podcast-App und funktioniert auf Android, iPhone und im Web. Melde dich an, um Abos geräteübergreifend zu synchronisieren.

 

Kurzanleitung