Artwork

Inhalt bereitgestellt von DataStax and Charna Parkey. Alle Podcast-Inhalte, einschließlich Episoden, Grafiken und Podcast-Beschreibungen, werden direkt von DataStax and Charna Parkey oder seinem Podcast-Plattformpartner hochgeladen und bereitgestellt. Wenn Sie glauben, dass jemand Ihr urheberrechtlich geschütztes Werk ohne Ihre Erlaubnis nutzt, können Sie dem hier beschriebenen Verfahren folgen https://de.player.fm/legal.
Player FM - Podcast-App
Gehen Sie mit der App Player FM offline!

Determinism in Complex Environments and Workflow Services with Maxim Fateev

42:06
 
Teilen
 

Manage episode 443179574 series 3604986
Inhalt bereitgestellt von DataStax and Charna Parkey. Alle Podcast-Inhalte, einschließlich Episoden, Grafiken und Podcast-Beschreibungen, werden direkt von DataStax and Charna Parkey oder seinem Podcast-Plattformpartner hochgeladen und bereitgestellt. Wenn Sie glauben, dass jemand Ihr urheberrechtlich geschütztes Werk ohne Ihre Erlaubnis nutzt, können Sie dem hier beschriebenen Verfahren folgen https://de.player.fm/legal.

This episode features an interview with Maxim Fateev, Co-founder and CEO of Temporal, an open source, distributed, and scalable workflow orchestration engine capable of running millions of workflows. He has 20 years of experience architecting mission-critical systems at Uber, Google, Amazon, and Microsoft.

In this episode, Sam sits down with Maxim to discuss workflow services, the power behind Temporal, and bringing determinism to highly complex environments.

-------------------

“[Temporal] has this notion of workflows, which can run for a very long time and handle external events, you can treat them as a durable actor. And they're very good at implementing a lifecycle. For example, you can have an object per model and let this object handle all the events. Like, new data came in, notify this object, this object will go and retrain it. Or, it'll run an activity to superiorly check the status. So you can have end-to-end lifecycle implemented fully in Temporal.” – Maxim Fateev

-------------------

Episode Timestamps:

(01:03): What’s top of mind for Maxim in workflow services

(04:09): What open source data means to Maxim

(11:07): Maxim explains his time at AWS and building Cadence at Uber

(23:09): Use cases and the community of Temporal

(28:26): How Temporal is being used for ML workloads

(32:28): One question Maxim wishes to be asked

(36:38): Maxim’s advice for those working with complex distributed systems

(39:11): Backstage takeaways with executive producer, Audra Montenegro

-------------------

Links:

LinkedIn - Connect with Maxim

Temporal.io

Watch Maxim’s talk “Designing a Workflow Engine from First Principles”

Replay Conference 2023

  continue reading

103 Episoden

Artwork
iconTeilen
 
Manage episode 443179574 series 3604986
Inhalt bereitgestellt von DataStax and Charna Parkey. Alle Podcast-Inhalte, einschließlich Episoden, Grafiken und Podcast-Beschreibungen, werden direkt von DataStax and Charna Parkey oder seinem Podcast-Plattformpartner hochgeladen und bereitgestellt. Wenn Sie glauben, dass jemand Ihr urheberrechtlich geschütztes Werk ohne Ihre Erlaubnis nutzt, können Sie dem hier beschriebenen Verfahren folgen https://de.player.fm/legal.

This episode features an interview with Maxim Fateev, Co-founder and CEO of Temporal, an open source, distributed, and scalable workflow orchestration engine capable of running millions of workflows. He has 20 years of experience architecting mission-critical systems at Uber, Google, Amazon, and Microsoft.

In this episode, Sam sits down with Maxim to discuss workflow services, the power behind Temporal, and bringing determinism to highly complex environments.

-------------------

“[Temporal] has this notion of workflows, which can run for a very long time and handle external events, you can treat them as a durable actor. And they're very good at implementing a lifecycle. For example, you can have an object per model and let this object handle all the events. Like, new data came in, notify this object, this object will go and retrain it. Or, it'll run an activity to superiorly check the status. So you can have end-to-end lifecycle implemented fully in Temporal.” – Maxim Fateev

-------------------

Episode Timestamps:

(01:03): What’s top of mind for Maxim in workflow services

(04:09): What open source data means to Maxim

(11:07): Maxim explains his time at AWS and building Cadence at Uber

(23:09): Use cases and the community of Temporal

(28:26): How Temporal is being used for ML workloads

(32:28): One question Maxim wishes to be asked

(36:38): Maxim’s advice for those working with complex distributed systems

(39:11): Backstage takeaways with executive producer, Audra Montenegro

-------------------

Links:

LinkedIn - Connect with Maxim

Temporal.io

Watch Maxim’s talk “Designing a Workflow Engine from First Principles”

Replay Conference 2023

  continue reading

103 Episoden

Όλα τα επεισόδια

×
 
Loading …

Willkommen auf Player FM!

Player FM scannt gerade das Web nach Podcasts mit hoher Qualität, die du genießen kannst. Es ist die beste Podcast-App und funktioniert auf Android, iPhone und im Web. Melde dich an, um Abos geräteübergreifend zu synchronisieren.

 

Kurzanleitung

Hören Sie sich diese Show an, während Sie die Gegend erkunden
Abspielen