Artwork

Inhalt bereitgestellt von MIT Comparative Media Studies/Writing and Massachusetts Institute of Technology. Alle Podcast-Inhalte, einschließlich Episoden, Grafiken und Podcast-Beschreibungen, werden direkt von MIT Comparative Media Studies/Writing and Massachusetts Institute of Technology oder seinem Podcast-Plattformpartner hochgeladen und bereitgestellt. Wenn Sie glauben, dass jemand Ihr urheberrechtlich geschütztes Werk ohne Ihre Erlaubnis nutzt, können Sie dem hier beschriebenen Verfahren folgen https://de.player.fm/legal.
Player FM - Podcast-App
Gehen Sie mit der App Player FM offline!

Desmond Upton Patton: “Contextual Analysis of Social Media”

51:10
 
Teilen
 

Manage episode 254165380 series 1053864
Inhalt bereitgestellt von MIT Comparative Media Studies/Writing and Massachusetts Institute of Technology. Alle Podcast-Inhalte, einschließlich Episoden, Grafiken und Podcast-Beschreibungen, werden direkt von MIT Comparative Media Studies/Writing and Massachusetts Institute of Technology oder seinem Podcast-Plattformpartner hochgeladen und bereitgestellt. Wenn Sie glauben, dass jemand Ihr urheberrechtlich geschütztes Werk ohne Ihre Erlaubnis nutzt, können Sie dem hier beschriebenen Verfahren folgen https://de.player.fm/legal.
While natural language processing affords researchers an opportunity to automatically scan millions of social media posts, there is growing concern that automated computational tools lack the ability to understand context and nuance in human communication and language. Columbia University’s Desmond Upton Patton introduces a critical systematic approach for extracting culture, context and nuance in social media data. The Contextual Analysis of Social Media (CASM) approach considers and critiques the gap between inadequacies in natural language processing tools and differences in geographic, cultural, and age-related variance of social media use and communication. CASM utilizes a team-based approach to analysis of social media data, explicitly informed by community expertise. The team uses CASM to analyze Twitter posts from gang-involved youth in Chicago. They designed a set of experiments to evaluate the performance of a support vector machine using CASM hand-labeled posts against a distant model. They found that the CASM-informed hand-labeled data outperforms the baseline distant labels, indicating that the CASM labels capture additional dimensions of information that content-only methods lack. They then question whether this is helpful or harmful for gun violence prevention.
  continue reading

407 Episoden

Artwork
iconTeilen
 
Manage episode 254165380 series 1053864
Inhalt bereitgestellt von MIT Comparative Media Studies/Writing and Massachusetts Institute of Technology. Alle Podcast-Inhalte, einschließlich Episoden, Grafiken und Podcast-Beschreibungen, werden direkt von MIT Comparative Media Studies/Writing and Massachusetts Institute of Technology oder seinem Podcast-Plattformpartner hochgeladen und bereitgestellt. Wenn Sie glauben, dass jemand Ihr urheberrechtlich geschütztes Werk ohne Ihre Erlaubnis nutzt, können Sie dem hier beschriebenen Verfahren folgen https://de.player.fm/legal.
While natural language processing affords researchers an opportunity to automatically scan millions of social media posts, there is growing concern that automated computational tools lack the ability to understand context and nuance in human communication and language. Columbia University’s Desmond Upton Patton introduces a critical systematic approach for extracting culture, context and nuance in social media data. The Contextual Analysis of Social Media (CASM) approach considers and critiques the gap between inadequacies in natural language processing tools and differences in geographic, cultural, and age-related variance of social media use and communication. CASM utilizes a team-based approach to analysis of social media data, explicitly informed by community expertise. The team uses CASM to analyze Twitter posts from gang-involved youth in Chicago. They designed a set of experiments to evaluate the performance of a support vector machine using CASM hand-labeled posts against a distant model. They found that the CASM-informed hand-labeled data outperforms the baseline distant labels, indicating that the CASM labels capture additional dimensions of information that content-only methods lack. They then question whether this is helpful or harmful for gun violence prevention.
  continue reading

407 Episoden

Minden epizód

×
 
Loading …

Willkommen auf Player FM!

Player FM scannt gerade das Web nach Podcasts mit hoher Qualität, die du genießen kannst. Es ist die beste Podcast-App und funktioniert auf Android, iPhone und im Web. Melde dich an, um Abos geräteübergreifend zu synchronisieren.

 

Kurzanleitung

Hören Sie sich diese Show an, während Sie die Gegend erkunden
Abspielen