Artwork

Inhalt bereitgestellt von Dev and Doc. Alle Podcast-Inhalte, einschließlich Episoden, Grafiken und Podcast-Beschreibungen, werden direkt von Dev and Doc oder seinem Podcast-Plattformpartner hochgeladen und bereitgestellt. Wenn Sie glauben, dass jemand Ihr urheberrechtlich geschütztes Werk ohne Ihre Erlaubnis nutzt, können Sie dem hier beschriebenen Verfahren folgen https://de.player.fm/legal.
Player FM - Podcast-App
Gehen Sie mit der App Player FM offline!

#24 Significantly advancing LLMs with RAG (Google's Gemini 2.0, Deep Research, notebookLM)

57:46
 
Teilen
 

Manage episode 460336033 series 3585389
Inhalt bereitgestellt von Dev and Doc. Alle Podcast-Inhalte, einschließlich Episoden, Grafiken und Podcast-Beschreibungen, werden direkt von Dev and Doc oder seinem Podcast-Plattformpartner hochgeladen und bereitgestellt. Wenn Sie glauben, dass jemand Ihr urheberrechtlich geschütztes Werk ohne Ihre Erlaubnis nutzt, können Sie dem hier beschriebenen Verfahren folgen https://de.player.fm/legal.

Dev and Doc - Latest News

Dev and Doc - Latest News

It's 2025, Dev and Doc cover the latest news including Google's deep research and notebook LM, DeepMind's Promptbreeder, and Anthropic's new RAG approach. We also go through what retrieval augmented generation (RAG) is, and how this technique is advancing LLM performance.

👋 Hey! If you are enjoying our conversations, reach out, share your thoughts and journey with us. Don't forget to subscribe whilst you're here :)

Meet the Team

  • 👨🏻‍⚕️ Doc - Dr. Joshua Au Yeung - LinkedIn
  • 🤖 Dev - Zeljko Kraljevic - Twitter

Where to Follow Us

Contact Us

📧 For enquiries - [email protected]

Credits

  • 🎞️ Editor - Dragan Kraljević - Instagram
  • 🎨 Brand Design and Art Direction - Ana Grigorovici - Behance

Episode Timeline

  • 00:00 Highlights
  • 00:53 News - Notebook LM, OpenAI 12 days of Christmas
  • 07:44 Change in the meta - post-training
  • 11:34 Optimizing prompts with DeepMind Promptbreeder
  • 13:20 Is OpenAI losing their lead against Google
  • 16:45 Deep research vs Perplexity
  • 24:18 AIME and oncology
  • 26:00 Deep research results
  • 30:20 RAG intro
  • 33:14 Second pass RAG
  • 36:20 RAG didn't take off
  • 38:40 Wikichat
  • 39:16 How do we improve on RAG?
  • 41:11 Semantic/topic chunking, cross-encoders, agentic RAG
  • 51:15 Google’s Problem Decomposition
  • 53:32 Anthropic’s Contextual Retrieval Processing
  • 56:07 Summary and wrap up

References

  continue reading

30 Episoden

Artwork
iconTeilen
 
Manage episode 460336033 series 3585389
Inhalt bereitgestellt von Dev and Doc. Alle Podcast-Inhalte, einschließlich Episoden, Grafiken und Podcast-Beschreibungen, werden direkt von Dev and Doc oder seinem Podcast-Plattformpartner hochgeladen und bereitgestellt. Wenn Sie glauben, dass jemand Ihr urheberrechtlich geschütztes Werk ohne Ihre Erlaubnis nutzt, können Sie dem hier beschriebenen Verfahren folgen https://de.player.fm/legal.

Dev and Doc - Latest News

Dev and Doc - Latest News

It's 2025, Dev and Doc cover the latest news including Google's deep research and notebook LM, DeepMind's Promptbreeder, and Anthropic's new RAG approach. We also go through what retrieval augmented generation (RAG) is, and how this technique is advancing LLM performance.

👋 Hey! If you are enjoying our conversations, reach out, share your thoughts and journey with us. Don't forget to subscribe whilst you're here :)

Meet the Team

  • 👨🏻‍⚕️ Doc - Dr. Joshua Au Yeung - LinkedIn
  • 🤖 Dev - Zeljko Kraljevic - Twitter

Where to Follow Us

Contact Us

📧 For enquiries - [email protected]

Credits

  • 🎞️ Editor - Dragan Kraljević - Instagram
  • 🎨 Brand Design and Art Direction - Ana Grigorovici - Behance

Episode Timeline

  • 00:00 Highlights
  • 00:53 News - Notebook LM, OpenAI 12 days of Christmas
  • 07:44 Change in the meta - post-training
  • 11:34 Optimizing prompts with DeepMind Promptbreeder
  • 13:20 Is OpenAI losing their lead against Google
  • 16:45 Deep research vs Perplexity
  • 24:18 AIME and oncology
  • 26:00 Deep research results
  • 30:20 RAG intro
  • 33:14 Second pass RAG
  • 36:20 RAG didn't take off
  • 38:40 Wikichat
  • 39:16 How do we improve on RAG?
  • 41:11 Semantic/topic chunking, cross-encoders, agentic RAG
  • 51:15 Google’s Problem Decomposition
  • 53:32 Anthropic’s Contextual Retrieval Processing
  • 56:07 Summary and wrap up

References

  continue reading

30 Episoden

Alle Folgen

×
 
Loading …

Willkommen auf Player FM!

Player FM scannt gerade das Web nach Podcasts mit hoher Qualität, die du genießen kannst. Es ist die beste Podcast-App und funktioniert auf Android, iPhone und im Web. Melde dich an, um Abos geräteübergreifend zu synchronisieren.

 

Kurzanleitung

Hören Sie sich diese Show an, während Sie die Gegend erkunden
Abspielen