Artwork

Inhalt bereitgestellt von The Data Flowcast. Alle Podcast-Inhalte, einschließlich Episoden, Grafiken und Podcast-Beschreibungen, werden direkt von The Data Flowcast oder seinem Podcast-Plattformpartner hochgeladen und bereitgestellt. Wenn Sie glauben, dass jemand Ihr urheberrechtlich geschütztes Werk ohne Ihre Erlaubnis nutzt, können Sie dem hier beschriebenen Verfahren folgen https://de.player.fm/legal.
Player FM - Podcast-App
Gehen Sie mit der App Player FM offline!

Overcoming Airflow Scaling Challenges at Monzo Bank with Jonathan Rainer

43:39
 
Teilen
 

Manage episode 465365556 series 2948506
Inhalt bereitgestellt von The Data Flowcast. Alle Podcast-Inhalte, einschließlich Episoden, Grafiken und Podcast-Beschreibungen, werden direkt von The Data Flowcast oder seinem Podcast-Plattformpartner hochgeladen und bereitgestellt. Wenn Sie glauben, dass jemand Ihr urheberrechtlich geschütztes Werk ohne Ihre Erlaubnis nutzt, können Sie dem hier beschriebenen Verfahren folgen https://de.player.fm/legal.

Scaling a data orchestration platform to manage thousands of tasks daily demands innovative solutions and strategic problem-solving. In this episode, we explore the complexities of scaling Airflow and the challenges of orchestrating thousands of tasks in dynamic data environments. Jonathan Rainer, Former Platform Engineer at Monzo Bank, joins us to share his journey optimizing data pipelines, overcoming UI limitations and ensuring DAG consistency in high-stakes scenarios.

Key Takeaways:

(03:11) Using Airflow to schedule computation in BigQuery.

(07:02) How DAGs with 8,000+ tasks were managed nightly.

(08:18) Ensuring accuracy in regulatory reporting for banking.

(11:35) Handling task inconsistency and DAG failures with automation.

(16:09) Building a service to resolve DAG consistency issues in Airflow.

(25:05) Challenges with scaling the Airflow UI for thousands of tasks.

(27:03) The role of upstream and downstream task management in Airflow.

(37:33) The importance of operational metrics for monitoring Airflow health.

(39:19) Balancing new tools with root cause analysis to address scaling issues.

(41:35) Why scaling solutions require both technical and leadership buy-in

Resources Mentioned:

Jonathan Rainer -

https://www.linkedin.com/in/jonathan-rainer/

Monzo Bank -

https://www.linkedin.com/company/monzo-bank/

Apache Airflow -

https://airflow.apache.org/

BigQuery -

https://airflow.apache.org/docs/apache-airflow-providers-google/stable/operators/cloud/bigquery.html

Kubernetes -

https://kubernetes.io/

Thanks for listening to “The Data Flowcast: Mastering Airflow for Data Engineering & AI.” If you enjoyed this episode, please leave a 5-star review to help get the word out about the show. And be sure to subscribe so you never miss any of the insightful conversations.

#AI #Automation #Airflow #MachineLearning

  continue reading

74 Episoden

Artwork
iconTeilen
 
Manage episode 465365556 series 2948506
Inhalt bereitgestellt von The Data Flowcast. Alle Podcast-Inhalte, einschließlich Episoden, Grafiken und Podcast-Beschreibungen, werden direkt von The Data Flowcast oder seinem Podcast-Plattformpartner hochgeladen und bereitgestellt. Wenn Sie glauben, dass jemand Ihr urheberrechtlich geschütztes Werk ohne Ihre Erlaubnis nutzt, können Sie dem hier beschriebenen Verfahren folgen https://de.player.fm/legal.

Scaling a data orchestration platform to manage thousands of tasks daily demands innovative solutions and strategic problem-solving. In this episode, we explore the complexities of scaling Airflow and the challenges of orchestrating thousands of tasks in dynamic data environments. Jonathan Rainer, Former Platform Engineer at Monzo Bank, joins us to share his journey optimizing data pipelines, overcoming UI limitations and ensuring DAG consistency in high-stakes scenarios.

Key Takeaways:

(03:11) Using Airflow to schedule computation in BigQuery.

(07:02) How DAGs with 8,000+ tasks were managed nightly.

(08:18) Ensuring accuracy in regulatory reporting for banking.

(11:35) Handling task inconsistency and DAG failures with automation.

(16:09) Building a service to resolve DAG consistency issues in Airflow.

(25:05) Challenges with scaling the Airflow UI for thousands of tasks.

(27:03) The role of upstream and downstream task management in Airflow.

(37:33) The importance of operational metrics for monitoring Airflow health.

(39:19) Balancing new tools with root cause analysis to address scaling issues.

(41:35) Why scaling solutions require both technical and leadership buy-in

Resources Mentioned:

Jonathan Rainer -

https://www.linkedin.com/in/jonathan-rainer/

Monzo Bank -

https://www.linkedin.com/company/monzo-bank/

Apache Airflow -

https://airflow.apache.org/

BigQuery -

https://airflow.apache.org/docs/apache-airflow-providers-google/stable/operators/cloud/bigquery.html

Kubernetes -

https://kubernetes.io/

Thanks for listening to “The Data Flowcast: Mastering Airflow for Data Engineering & AI.” If you enjoyed this episode, please leave a 5-star review to help get the word out about the show. And be sure to subscribe so you never miss any of the insightful conversations.

#AI #Automation #Airflow #MachineLearning

  continue reading

74 Episoden

Alle Folgen

×
 
Loading …

Willkommen auf Player FM!

Player FM scannt gerade das Web nach Podcasts mit hoher Qualität, die du genießen kannst. Es ist die beste Podcast-App und funktioniert auf Android, iPhone und im Web. Melde dich an, um Abos geräteübergreifend zu synchronisieren.

 

Kurzanleitung

Hören Sie sich diese Show an, während Sie die Gegend erkunden
Abspielen