Artwork

Inhalt bereitgestellt von UCTV. Alle Podcast-Inhalte, einschließlich Episoden, Grafiken und Podcast-Beschreibungen, werden direkt von UCTV oder seinem Podcast-Plattformpartner hochgeladen und bereitgestellt. Wenn Sie glauben, dass jemand Ihr urheberrechtlich geschütztes Werk ohne Ihre Erlaubnis nutzt, können Sie dem hier beschriebenen Verfahren folgen https://de.player.fm/legal.
Player FM - Podcast-App
Gehen Sie mit der App Player FM offline!

AI Agents That Do What We Want

56:31
 
Teilen
 

Manage episode 390420853 series 2933222
Inhalt bereitgestellt von UCTV. Alle Podcast-Inhalte, einschließlich Episoden, Grafiken und Podcast-Beschreibungen, werden direkt von UCTV oder seinem Podcast-Plattformpartner hochgeladen und bereitgestellt. Wenn Sie glauben, dass jemand Ihr urheberrechtlich geschütztes Werk ohne Ihre Erlaubnis nutzt, können Sie dem hier beschriebenen Verfahren folgen https://de.player.fm/legal.
Researchers used to define objectives for artificial intelligence (AI) agents by hand, but with progress in optimization and reinforcement learning, it became obvious that it's too difficult to think of everything ahead of time and write it down. Instead, these days the objective is viewed as a hidden part of the state on which researchers can receive feedback or observations from humans — how they act and react, how they compare options, what they say. In this talk, Anca Dragan, Associate Professor of Electrical Engineering and Computer Sciences at UC Berkeley, discusses what this transition has achieved, what open challenges researchers still face and ideas for mitigating them. Dragan discusses applications in robotics and how the lessons there apply to virtual agents like large language models. Series: "Data Science Channel" [Science] [Show ID: 39350]
  continue reading

100 Episoden

Artwork

AI Agents That Do What We Want

UC Berkeley (Audio)

0-10 subscribers

published

iconTeilen
 
Manage episode 390420853 series 2933222
Inhalt bereitgestellt von UCTV. Alle Podcast-Inhalte, einschließlich Episoden, Grafiken und Podcast-Beschreibungen, werden direkt von UCTV oder seinem Podcast-Plattformpartner hochgeladen und bereitgestellt. Wenn Sie glauben, dass jemand Ihr urheberrechtlich geschütztes Werk ohne Ihre Erlaubnis nutzt, können Sie dem hier beschriebenen Verfahren folgen https://de.player.fm/legal.
Researchers used to define objectives for artificial intelligence (AI) agents by hand, but with progress in optimization and reinforcement learning, it became obvious that it's too difficult to think of everything ahead of time and write it down. Instead, these days the objective is viewed as a hidden part of the state on which researchers can receive feedback or observations from humans — how they act and react, how they compare options, what they say. In this talk, Anca Dragan, Associate Professor of Electrical Engineering and Computer Sciences at UC Berkeley, discusses what this transition has achieved, what open challenges researchers still face and ideas for mitigating them. Dragan discusses applications in robotics and how the lessons there apply to virtual agents like large language models. Series: "Data Science Channel" [Science] [Show ID: 39350]
  continue reading

100 Episoden

Alle Folgen

×
 
Loading …

Willkommen auf Player FM!

Player FM scannt gerade das Web nach Podcasts mit hoher Qualität, die du genießen kannst. Es ist die beste Podcast-App und funktioniert auf Android, iPhone und im Web. Melde dich an, um Abos geräteübergreifend zu synchronisieren.

 

Kurzanleitung