Artwork

Inhalt bereitgestellt von The Binary Breakdown. Alle Podcast-Inhalte, einschließlich Episoden, Grafiken und Podcast-Beschreibungen, werden direkt von The Binary Breakdown oder seinem Podcast-Plattformpartner hochgeladen und bereitgestellt. Wenn Sie glauben, dass jemand Ihr urheberrechtlich geschütztes Werk ohne Ihre Erlaubnis nutzt, können Sie dem hier beschriebenen Verfahren folgen https://de.player.fm/legal.
Player FM - Podcast-App
Gehen Sie mit der App Player FM offline!

Ray: A Distributed Framework for Emerging AI Applications

19:40
 
Teilen
 

Manage episode 487366625 series 3670304
Inhalt bereitgestellt von The Binary Breakdown. Alle Podcast-Inhalte, einschließlich Episoden, Grafiken und Podcast-Beschreibungen, werden direkt von The Binary Breakdown oder seinem Podcast-Plattformpartner hochgeladen und bereitgestellt. Wenn Sie glauben, dass jemand Ihr urheberrechtlich geschütztes Werk ohne Ihre Erlaubnis nutzt, können Sie dem hier beschriebenen Verfahren folgen https://de.player.fm/legal.

This research paper introduces Ray, a distributed framework designed for emerging AI applications, particularly those involving reinforcement learning. It addresses the limitations of existing systems in handling the complex demands of these applications, which require continuous interaction with the environment. Ray unifies task-parallel and actor-based computations through a dynamic execution engine, facilitating simulation, training, and serving within a single framework. The system uses a distributed scheduler and fault-tolerant store to manage control state, achieving high scalability and performance. Experiments demonstrate Ray's ability to scale to millions of tasks per second and outperform specialized systems in reinforcement learning applications. The paper highlights Ray's architecture, programming model, and performance, emphasizing its flexibility and efficiency in supporting the evolving needs of AI.

https://www.usenix.org/system/files/osdi18-moritz.pdf

  continue reading

44 Episoden

Artwork
iconTeilen
 
Manage episode 487366625 series 3670304
Inhalt bereitgestellt von The Binary Breakdown. Alle Podcast-Inhalte, einschließlich Episoden, Grafiken und Podcast-Beschreibungen, werden direkt von The Binary Breakdown oder seinem Podcast-Plattformpartner hochgeladen und bereitgestellt. Wenn Sie glauben, dass jemand Ihr urheberrechtlich geschütztes Werk ohne Ihre Erlaubnis nutzt, können Sie dem hier beschriebenen Verfahren folgen https://de.player.fm/legal.

This research paper introduces Ray, a distributed framework designed for emerging AI applications, particularly those involving reinforcement learning. It addresses the limitations of existing systems in handling the complex demands of these applications, which require continuous interaction with the environment. Ray unifies task-parallel and actor-based computations through a dynamic execution engine, facilitating simulation, training, and serving within a single framework. The system uses a distributed scheduler and fault-tolerant store to manage control state, achieving high scalability and performance. Experiments demonstrate Ray's ability to scale to millions of tasks per second and outperform specialized systems in reinforcement learning applications. The paper highlights Ray's architecture, programming model, and performance, emphasizing its flexibility and efficiency in supporting the evolving needs of AI.

https://www.usenix.org/system/files/osdi18-moritz.pdf

  continue reading

44 Episoden

Alle Folgen

×
 
Loading …

Willkommen auf Player FM!

Player FM scannt gerade das Web nach Podcasts mit hoher Qualität, die du genießen kannst. Es ist die beste Podcast-App und funktioniert auf Android, iPhone und im Web. Melde dich an, um Abos geräteübergreifend zu synchronisieren.

 

Kurzanleitung

Hören Sie sich diese Show an, während Sie die Gegend erkunden
Abspielen