Artwork

Inhalt bereitgestellt von Carnegie Mellon University Software Engineering Institute and SEI Members of Technical Staff. Alle Podcast-Inhalte, einschließlich Episoden, Grafiken und Podcast-Beschreibungen, werden direkt von Carnegie Mellon University Software Engineering Institute and SEI Members of Technical Staff oder seinem Podcast-Plattformpartner hochgeladen und bereitgestellt. Wenn Sie glauben, dass jemand Ihr urheberrechtlich geschütztes Werk ohne Ihre Erlaubnis nutzt, können Sie dem hier beschriebenen Verfahren folgen https://de.player.fm/legal.
Player FM - Podcast-App
Gehen Sie mit der App Player FM offline!

Improving Analytics Using Enriched Network Flow Data

1:02:25
 
Teilen
 

Manage episode 361742674 series 1264075
Inhalt bereitgestellt von Carnegie Mellon University Software Engineering Institute and SEI Members of Technical Staff. Alle Podcast-Inhalte, einschließlich Episoden, Grafiken und Podcast-Beschreibungen, werden direkt von Carnegie Mellon University Software Engineering Institute and SEI Members of Technical Staff oder seinem Podcast-Plattformpartner hochgeladen und bereitgestellt. Wenn Sie glauben, dass jemand Ihr urheberrechtlich geschütztes Werk ohne Ihre Erlaubnis nutzt, können Sie dem hier beschriebenen Verfahren folgen https://de.player.fm/legal.

Classic tool suites that are used to process network flow records deal with very limited detail on the network connections they summarize. These tools limit detail for several reasons: (1) to maintain long-baseline data, (2) to focus on security-indicative data fields, and (3) to support data collection across large or complex infrastructures. However, a consequence of this limited detail is that analysis results based on this data provide information about indications of behavior rather than information that accurately identifies behavior with high confidence. In this webcast, Tim Shimeall and Katherine Prevost discuss how to use IPFIX-formatted data with detail derived from deep packet inspection (DPI) to provide increased confidence in identifying behavior.

  continue reading

174 Episoden

Artwork
iconTeilen
 
Manage episode 361742674 series 1264075
Inhalt bereitgestellt von Carnegie Mellon University Software Engineering Institute and SEI Members of Technical Staff. Alle Podcast-Inhalte, einschließlich Episoden, Grafiken und Podcast-Beschreibungen, werden direkt von Carnegie Mellon University Software Engineering Institute and SEI Members of Technical Staff oder seinem Podcast-Plattformpartner hochgeladen und bereitgestellt. Wenn Sie glauben, dass jemand Ihr urheberrechtlich geschütztes Werk ohne Ihre Erlaubnis nutzt, können Sie dem hier beschriebenen Verfahren folgen https://de.player.fm/legal.

Classic tool suites that are used to process network flow records deal with very limited detail on the network connections they summarize. These tools limit detail for several reasons: (1) to maintain long-baseline data, (2) to focus on security-indicative data fields, and (3) to support data collection across large or complex infrastructures. However, a consequence of this limited detail is that analysis results based on this data provide information about indications of behavior rather than information that accurately identifies behavior with high confidence. In this webcast, Tim Shimeall and Katherine Prevost discuss how to use IPFIX-formatted data with detail derived from deep packet inspection (DPI) to provide increased confidence in identifying behavior.

  continue reading

174 Episoden

Alle Folgen

×
 
Loading …

Willkommen auf Player FM!

Player FM scannt gerade das Web nach Podcasts mit hoher Qualität, die du genießen kannst. Es ist die beste Podcast-App und funktioniert auf Android, iPhone und im Web. Melde dich an, um Abos geräteübergreifend zu synchronisieren.

 

Kurzanleitung

Hören Sie sich diese Show an, während Sie die Gegend erkunden
Abspielen