Artwork

Inhalt bereitgestellt von Carnegie Mellon University Software Engineering Institute and SEI Members of Technical Staff. Alle Podcast-Inhalte, einschließlich Episoden, Grafiken und Podcast-Beschreibungen, werden direkt von Carnegie Mellon University Software Engineering Institute and SEI Members of Technical Staff oder seinem Podcast-Plattformpartner hochgeladen und bereitgestellt. Wenn Sie glauben, dass jemand Ihr urheberrechtlich geschütztes Werk ohne Ihre Erlaubnis nutzt, können Sie dem hier beschriebenen Verfahren folgen https://de.player.fm/legal.
Player FM - Podcast-App
Gehen Sie mit der App Player FM offline!

An Introduction to the MLOps Tool Evaluation Rubric

1:00:23
 
Teilen
 

Manage episode 489496433 series 1264075
Inhalt bereitgestellt von Carnegie Mellon University Software Engineering Institute and SEI Members of Technical Staff. Alle Podcast-Inhalte, einschließlich Episoden, Grafiken und Podcast-Beschreibungen, werden direkt von Carnegie Mellon University Software Engineering Institute and SEI Members of Technical Staff oder seinem Podcast-Plattformpartner hochgeladen und bereitgestellt. Wenn Sie glauben, dass jemand Ihr urheberrechtlich geschütztes Werk ohne Ihre Erlaubnis nutzt, können Sie dem hier beschriebenen Verfahren folgen https://de.player.fm/legal.

Organizations looking to build and adopt artificial intelligence (AI)–enabled systems face the challenge of identifying the right capabilities and tools to support Machine Learning Operations (MLOps) pipelines. Navigating the wide range of available tools can be especially difficult for organizations new to AI or those that have not yet deployed systems at scale. This webcast introduces the MLOps Tool Evaluation Rubric, designed to help acquisition teams pinpoint organizational priorities for MLOps tooling, customize rubrics to evaluate those key capabilities, and ultimately select tools that will effectively support ML developers and systems throughout the entire lifecycle, from exploratory data analysis to model deployment and monitoring. This webcast will walk viewers through the rubric's design and content, share lessons learned from applying the rubric in practice, and conclude with a brief demo.

What Attendees Will Learn:

• How to identify and prioritize key capabilities for MLOps tooling within their organizations

• How to customize and apply the MLOps Tool Evaluation Rubric to evaluate potential tools effectively

• Best practices and lessons learned from real-world use of the rubric in AI projects

  continue reading

174 Episoden

Artwork
iconTeilen
 
Manage episode 489496433 series 1264075
Inhalt bereitgestellt von Carnegie Mellon University Software Engineering Institute and SEI Members of Technical Staff. Alle Podcast-Inhalte, einschließlich Episoden, Grafiken und Podcast-Beschreibungen, werden direkt von Carnegie Mellon University Software Engineering Institute and SEI Members of Technical Staff oder seinem Podcast-Plattformpartner hochgeladen und bereitgestellt. Wenn Sie glauben, dass jemand Ihr urheberrechtlich geschütztes Werk ohne Ihre Erlaubnis nutzt, können Sie dem hier beschriebenen Verfahren folgen https://de.player.fm/legal.

Organizations looking to build and adopt artificial intelligence (AI)–enabled systems face the challenge of identifying the right capabilities and tools to support Machine Learning Operations (MLOps) pipelines. Navigating the wide range of available tools can be especially difficult for organizations new to AI or those that have not yet deployed systems at scale. This webcast introduces the MLOps Tool Evaluation Rubric, designed to help acquisition teams pinpoint organizational priorities for MLOps tooling, customize rubrics to evaluate those key capabilities, and ultimately select tools that will effectively support ML developers and systems throughout the entire lifecycle, from exploratory data analysis to model deployment and monitoring. This webcast will walk viewers through the rubric's design and content, share lessons learned from applying the rubric in practice, and conclude with a brief demo.

What Attendees Will Learn:

• How to identify and prioritize key capabilities for MLOps tooling within their organizations

• How to customize and apply the MLOps Tool Evaluation Rubric to evaluate potential tools effectively

• Best practices and lessons learned from real-world use of the rubric in AI projects

  continue reading

174 Episoden

Alle Folgen

×
 
Loading …

Willkommen auf Player FM!

Player FM scannt gerade das Web nach Podcasts mit hoher Qualität, die du genießen kannst. Es ist die beste Podcast-App und funktioniert auf Android, iPhone und im Web. Melde dich an, um Abos geräteübergreifend zu synchronisieren.

 

Kurzanleitung

Hören Sie sich diese Show an, während Sie die Gegend erkunden
Abspielen