Artwork

Inhalt bereitgestellt von Ethan Siegel. Alle Podcast-Inhalte, einschließlich Episoden, Grafiken und Podcast-Beschreibungen, werden direkt von Ethan Siegel oder seinem Podcast-Plattformpartner hochgeladen und bereitgestellt. Wenn Sie glauben, dass jemand Ihr urheberrechtlich geschütztes Werk ohne Ihre Erlaubnis nutzt, können Sie dem hier beschriebenen Verfahren folgen https://de.player.fm/legal.
Player FM - Podcast-App
Gehen Sie mit der App Player FM offline!

Starts With A Bang #108 - A Future Particle Collider

1:38:55
 
Teilen
 

Manage episode 432293688 series 3545827
Inhalt bereitgestellt von Ethan Siegel. Alle Podcast-Inhalte, einschließlich Episoden, Grafiken und Podcast-Beschreibungen, werden direkt von Ethan Siegel oder seinem Podcast-Plattformpartner hochgeladen und bereitgestellt. Wenn Sie glauben, dass jemand Ihr urheberrechtlich geschütztes Werk ohne Ihre Erlaubnis nutzt, können Sie dem hier beschriebenen Verfahren folgen https://de.player.fm/legal.

Right now, the Large Hadron Collider (LHC) is the most powerful particle accelerator/collider ever built. Accelerating protons up to 299,792,455 m/s, just 3 m/s shy of the speed of light, they smash together at energies of 14 TeV, creating all sorts of new particles (and antiparticles) from raw energy, leveraging Einstein's famous E = mc² in an innovative way. By building detectors around the collision points, we can uncover all sorts of properties about any known particles and potentially discover new particles as well, as the LHC did for the Higgs boson back in the early 2010s.

But the LHC has a limited lifetime, and by the 2030s, will complete its data-taking runs. If we want to go beyond the LHC, we need to start planning for a new particle collider now, and there are four great options that can take us beyond the current frontier: a linear lepton collider, a circular lepton collider, a circular hadron collider, and a potentially new innovation of a circular muon collider. In this episode of the Starts With A Bang podcast, Dr. Cari Cesarotti joins us to discuss all of these options and much more, as we look ahead to the future of particle physics.
The serious question isn't whether we should build one (we definitely should), but which approach will be most fruitful in pushing our suite of knowledge beyond the known frontiers. There's an entire Universe to explore at the subatomic level, and those of us curious about the Universe want to know what's out there better than ever before!


(This image shows the expected signature of a Higgs boson decaying to bottom-quark jets around the collision point inside a muon collider. The yellow lines represent the decaying background of muons, while the red lines represent the b-quark jets. Credit: D Lucchesi et al.)

  continue reading

110 Episoden

Artwork
iconTeilen
 
Manage episode 432293688 series 3545827
Inhalt bereitgestellt von Ethan Siegel. Alle Podcast-Inhalte, einschließlich Episoden, Grafiken und Podcast-Beschreibungen, werden direkt von Ethan Siegel oder seinem Podcast-Plattformpartner hochgeladen und bereitgestellt. Wenn Sie glauben, dass jemand Ihr urheberrechtlich geschütztes Werk ohne Ihre Erlaubnis nutzt, können Sie dem hier beschriebenen Verfahren folgen https://de.player.fm/legal.

Right now, the Large Hadron Collider (LHC) is the most powerful particle accelerator/collider ever built. Accelerating protons up to 299,792,455 m/s, just 3 m/s shy of the speed of light, they smash together at energies of 14 TeV, creating all sorts of new particles (and antiparticles) from raw energy, leveraging Einstein's famous E = mc² in an innovative way. By building detectors around the collision points, we can uncover all sorts of properties about any known particles and potentially discover new particles as well, as the LHC did for the Higgs boson back in the early 2010s.

But the LHC has a limited lifetime, and by the 2030s, will complete its data-taking runs. If we want to go beyond the LHC, we need to start planning for a new particle collider now, and there are four great options that can take us beyond the current frontier: a linear lepton collider, a circular lepton collider, a circular hadron collider, and a potentially new innovation of a circular muon collider. In this episode of the Starts With A Bang podcast, Dr. Cari Cesarotti joins us to discuss all of these options and much more, as we look ahead to the future of particle physics.
The serious question isn't whether we should build one (we definitely should), but which approach will be most fruitful in pushing our suite of knowledge beyond the known frontiers. There's an entire Universe to explore at the subatomic level, and those of us curious about the Universe want to know what's out there better than ever before!


(This image shows the expected signature of a Higgs boson decaying to bottom-quark jets around the collision point inside a muon collider. The yellow lines represent the decaying background of muons, while the red lines represent the b-quark jets. Credit: D Lucchesi et al.)

  continue reading

110 Episoden

Alle Folgen

×
 
Loading …

Willkommen auf Player FM!

Player FM scannt gerade das Web nach Podcasts mit hoher Qualität, die du genießen kannst. Es ist die beste Podcast-App und funktioniert auf Android, iPhone und im Web. Melde dich an, um Abos geräteübergreifend zu synchronisieren.

 

Kurzanleitung