Artwork

Inhalt bereitgestellt von Damien Deighan and Philipp Diesinger, Damien Deighan, and Philipp Diesinger. Alle Podcast-Inhalte, einschließlich Episoden, Grafiken und Podcast-Beschreibungen, werden direkt von Damien Deighan and Philipp Diesinger, Damien Deighan, and Philipp Diesinger oder seinem Podcast-Plattformpartner hochgeladen und bereitgestellt. Wenn Sie glauben, dass jemand Ihr urheberrechtlich geschütztes Werk ohne Ihre Erlaubnis nutzt, können Sie dem hier beschriebenen Verfahren folgen https://de.player.fm/legal.
Player FM - Podcast-App
Gehen Sie mit der App Player FM offline!

The Path to Responsible AI with Julia Stoyanovich of NYU

48:09
 
Teilen
 

Manage episode 398318406 series 2954151
Inhalt bereitgestellt von Damien Deighan and Philipp Diesinger, Damien Deighan, and Philipp Diesinger. Alle Podcast-Inhalte, einschließlich Episoden, Grafiken und Podcast-Beschreibungen, werden direkt von Damien Deighan and Philipp Diesinger, Damien Deighan, and Philipp Diesinger oder seinem Podcast-Plattformpartner hochgeladen und bereitgestellt. Wenn Sie glauben, dass jemand Ihr urheberrechtlich geschütztes Werk ohne Ihre Erlaubnis nutzt, können Sie dem hier beschriebenen Verfahren folgen https://de.player.fm/legal.

In this enlightening episode, Dr. Julia Stoyanovich delves into the world of responsible AI, exploring the ethical, societal, and technological implications of AI systems. She underscores the importance of global regulations, human-centric decision-making, and the proactive management of biases and risks associated with AI deployment. Through her expert lens, Dr. Stoyanovich advocates for a future where AI is not only innovative but also equitable, transparent, and aligned with human values.

Julia is an Institute Associate Professor at NYU in both the Tandon School of Engineering, and the Center for Data Science. In addition she is Director of the Center for Responsible AI also at NYU. Her research focuses on responsible data management, fairness, diversity, transparency, and data protection in all stages of the data science lifecycle.

Episode Summary -

  1. The Definition of Responsible AI
  2. Example of ethical AI in the medical world - Fast MRI technology
  3. Fairness and Diversity in AI
  4. The role of regulation - What it can and can’t do
  5. Transparency, Bias in AI models and Data Protection
  6. The dangers of Gen AI Hype and problematic AI narratives from the tech industry
  7. The impotence of humans in ensuring ethical development
  8. Why “Responsible AI” is actually a bit of a misleading term
  9. What Data & AI leaders can do to practise Responsible AI

  continue reading

31 Episoden

Artwork
iconTeilen
 
Manage episode 398318406 series 2954151
Inhalt bereitgestellt von Damien Deighan and Philipp Diesinger, Damien Deighan, and Philipp Diesinger. Alle Podcast-Inhalte, einschließlich Episoden, Grafiken und Podcast-Beschreibungen, werden direkt von Damien Deighan and Philipp Diesinger, Damien Deighan, and Philipp Diesinger oder seinem Podcast-Plattformpartner hochgeladen und bereitgestellt. Wenn Sie glauben, dass jemand Ihr urheberrechtlich geschütztes Werk ohne Ihre Erlaubnis nutzt, können Sie dem hier beschriebenen Verfahren folgen https://de.player.fm/legal.

In this enlightening episode, Dr. Julia Stoyanovich delves into the world of responsible AI, exploring the ethical, societal, and technological implications of AI systems. She underscores the importance of global regulations, human-centric decision-making, and the proactive management of biases and risks associated with AI deployment. Through her expert lens, Dr. Stoyanovich advocates for a future where AI is not only innovative but also equitable, transparent, and aligned with human values.

Julia is an Institute Associate Professor at NYU in both the Tandon School of Engineering, and the Center for Data Science. In addition she is Director of the Center for Responsible AI also at NYU. Her research focuses on responsible data management, fairness, diversity, transparency, and data protection in all stages of the data science lifecycle.

Episode Summary -

  1. The Definition of Responsible AI
  2. Example of ethical AI in the medical world - Fast MRI technology
  3. Fairness and Diversity in AI
  4. The role of regulation - What it can and can’t do
  5. Transparency, Bias in AI models and Data Protection
  6. The dangers of Gen AI Hype and problematic AI narratives from the tech industry
  7. The impotence of humans in ensuring ethical development
  8. Why “Responsible AI” is actually a bit of a misleading term
  9. What Data & AI leaders can do to practise Responsible AI

  continue reading

31 Episoden

Alle Folgen

×
 
Loading …

Willkommen auf Player FM!

Player FM scannt gerade das Web nach Podcasts mit hoher Qualität, die du genießen kannst. Es ist die beste Podcast-App und funktioniert auf Android, iPhone und im Web. Melde dich an, um Abos geräteübergreifend zu synchronisieren.

 

Kurzanleitung

Hören Sie sich diese Show an, während Sie die Gegend erkunden
Abspielen