Artwork

Inhalt bereitgestellt von O'Reilly Media. Alle Podcast-Inhalte, einschließlich Episoden, Grafiken und Podcast-Beschreibungen, werden direkt von O'Reilly Media oder seinem Podcast-Plattformpartner hochgeladen und bereitgestellt. Wenn Sie glauben, dass jemand Ihr urheberrechtlich geschütztes Werk ohne Ihre Erlaubnis nutzt, können Sie dem hier beschriebenen Verfahren folgen https://de.player.fm/legal.
Player FM - Podcast-App
Gehen Sie mit der App Player FM offline!

Machine learning and analytics for time series data

40:31
 
Teilen
 

Manage episode 372641225 series 3497926
Inhalt bereitgestellt von O'Reilly Media. Alle Podcast-Inhalte, einschließlich Episoden, Grafiken und Podcast-Beschreibungen, werden direkt von O'Reilly Media oder seinem Podcast-Plattformpartner hochgeladen und bereitgestellt. Wenn Sie glauben, dass jemand Ihr urheberrechtlich geschütztes Werk ohne Ihre Erlaubnis nutzt, können Sie dem hier beschriebenen Verfahren folgen https://de.player.fm/legal.

In this episode of the Data Show, I speak with Arun Kejariwal of Facebook and Ira Cohen of Anodot (full disclosure: I’m an advisor to Anodot). This conversation stemmed from a recent online panel discussion we did, where we discussed time series data, and, specifically, anomaly detection and forecasting. Both Kejariwal (at Machine Zone, Twitter, and Facebook) and Cohen (at HP and Anodot) have extensive experience building analytic and machine learning solutions at large scale, and both have worked extensively with time-series data. The growing interest in AI and machine learning has not been confined to computer vision, speech technologies, or text. In the enterprise, there is strong interest in using similar automation tools for temporal data and time series.

We had a great conversation spanning many topics, including:

  • Why businesses should care about anomaly detection and forecasting; specifically, we delve into examples outside of IT Operations & Monitoring.
  • (Specialized) techniques and tools for automating some of the relevant tasks, including signal processing, statistical methods, and machine learning.
  • What are some of the key features of an anomaly detection or forecasting system.
  • What lies ahead for large-scale systems for time series analysis.

Related resources:

  continue reading

15 Episoden

Artwork
iconTeilen
 
Manage episode 372641225 series 3497926
Inhalt bereitgestellt von O'Reilly Media. Alle Podcast-Inhalte, einschließlich Episoden, Grafiken und Podcast-Beschreibungen, werden direkt von O'Reilly Media oder seinem Podcast-Plattformpartner hochgeladen und bereitgestellt. Wenn Sie glauben, dass jemand Ihr urheberrechtlich geschütztes Werk ohne Ihre Erlaubnis nutzt, können Sie dem hier beschriebenen Verfahren folgen https://de.player.fm/legal.

In this episode of the Data Show, I speak with Arun Kejariwal of Facebook and Ira Cohen of Anodot (full disclosure: I’m an advisor to Anodot). This conversation stemmed from a recent online panel discussion we did, where we discussed time series data, and, specifically, anomaly detection and forecasting. Both Kejariwal (at Machine Zone, Twitter, and Facebook) and Cohen (at HP and Anodot) have extensive experience building analytic and machine learning solutions at large scale, and both have worked extensively with time-series data. The growing interest in AI and machine learning has not been confined to computer vision, speech technologies, or text. In the enterprise, there is strong interest in using similar automation tools for temporal data and time series.

We had a great conversation spanning many topics, including:

  • Why businesses should care about anomaly detection and forecasting; specifically, we delve into examples outside of IT Operations & Monitoring.
  • (Specialized) techniques and tools for automating some of the relevant tasks, including signal processing, statistical methods, and machine learning.
  • What are some of the key features of an anomaly detection or forecasting system.
  • What lies ahead for large-scale systems for time series analysis.

Related resources:

  continue reading

15 Episoden

Alle Folgen

×
 
Loading …

Willkommen auf Player FM!

Player FM scannt gerade das Web nach Podcasts mit hoher Qualität, die du genießen kannst. Es ist die beste Podcast-App und funktioniert auf Android, iPhone und im Web. Melde dich an, um Abos geräteübergreifend zu synchronisieren.

 

Kurzanleitung

Hören Sie sich diese Show an, während Sie die Gegend erkunden
Abspielen