Artwork

Inhalt bereitgestellt von DataQubi. Alle Podcast-Inhalte, einschließlich Episoden, Grafiken und Podcast-Beschreibungen, werden direkt von DataQubi oder seinem Podcast-Plattformpartner hochgeladen und bereitgestellt. Wenn Sie glauben, dass jemand Ihr urheberrechtlich geschütztes Werk ohne Ihre Erlaubnis nutzt, können Sie dem hier beschriebenen Verfahren folgen https://de.player.fm/legal.
Player FM - Podcast-App
Gehen Sie mit der App Player FM offline!

The Rise of Data-Driven Decision Making

26:28
 
Teilen
 

Manage episode 476839988 series 3656088
Inhalt bereitgestellt von DataQubi. Alle Podcast-Inhalte, einschließlich Episoden, Grafiken und Podcast-Beschreibungen, werden direkt von DataQubi oder seinem Podcast-Plattformpartner hochgeladen und bereitgestellt. Wenn Sie glauben, dass jemand Ihr urheberrechtlich geschütztes Werk ohne Ihre Erlaubnis nutzt, können Sie dem hier beschriebenen Verfahren folgen https://de.player.fm/legal.

Send us a text

Discover how data-driven decision-making (DDDM) is transforming the way businesses operate and make choices. This episode explores the growing recognition that relying on data, rather than solely on intuition, leads to more confident and proactive strategies. Learn about the numerous advantages of DDDM, including increased efficiency and productivity, improved customer experience, better risk management, and potential cost savings.

Key Facts and Ideas:

  • Paradata is increasingly important: In the age of AI, understanding how data was collected (paradata) is crucial alongside metadata. Blockchain technology may assist with this.
  • SMART goals are essential for data initiatives: Defining specific, measurable, achievable, relevant, and time-bound objectives helps track progress in building a data-first culture.
  • Data governance is key to overcoming data silos: Establishing guidelines and educating employees on the benefits of data sharing are crucial.
  • BI gathers data from internal and external sources: This provides a holistic view for decision-making.
  • Executive sponsorship requires formal responsibilities and time commitment: Clearly defining expectations ensures the sponsor's effective involvement.
  • Microsoft Fabric aims to simplify data analytics: By integrating various tools onto a single platform, it intends to democratize data access and collaboration.
  • Data quality is a significant issue in data transformation: Companies need to address data bottlenecks early in their data journey.
  • Too much data can be as challenging as too little: Identifying the right data for decision-making is critical.
  • Data should represent real customers: Leaders need to ensure that data analysis doesn't lose sight of the human element. Programs like customer lunch-and-learns can help.
  • Informed intuition blends data and experience: It's not just a "gut feeling" but a logical conclusion derived from both analysis and past learnings.
  • Developing intuition requires experience and learning from failures: Creating a psychologically safe environment where mistakes are accepted is important.
  • Checking intuition with others can validate decisions and gain buy-in.

Support the show

Thank you for tuning in to "Analyze Happy: Crafting Your Data Estate"!
We hope you enjoyed today’s deep dive. If you found this episode helpful, don’t forget to subscribe for more insights on building modern data estates with Microsoft technologies like Fabric, Azure Databricks, and Power Platform.

Connect with Us:

  • Have a question or topic you’d like us to cover? Reach out on linkedin.com/company/dataqubi or [email protected]
  • Visit our website at www.dataqubi.com or episode resources, show notes, and additional tips on data governance, AI transformation, and best practices.

Stay Ahead:
Check out the Microsoft Learn portal for free training on Azure IoT, Fabric, and more, or explore the Azure Databricks community for the latest updates. Let’s keep crafting data solutions that fit your organization’s culture and tech landscape—happy analyzing until next time!

  continue reading

25 Episoden

Artwork
iconTeilen
 
Manage episode 476839988 series 3656088
Inhalt bereitgestellt von DataQubi. Alle Podcast-Inhalte, einschließlich Episoden, Grafiken und Podcast-Beschreibungen, werden direkt von DataQubi oder seinem Podcast-Plattformpartner hochgeladen und bereitgestellt. Wenn Sie glauben, dass jemand Ihr urheberrechtlich geschütztes Werk ohne Ihre Erlaubnis nutzt, können Sie dem hier beschriebenen Verfahren folgen https://de.player.fm/legal.

Send us a text

Discover how data-driven decision-making (DDDM) is transforming the way businesses operate and make choices. This episode explores the growing recognition that relying on data, rather than solely on intuition, leads to more confident and proactive strategies. Learn about the numerous advantages of DDDM, including increased efficiency and productivity, improved customer experience, better risk management, and potential cost savings.

Key Facts and Ideas:

  • Paradata is increasingly important: In the age of AI, understanding how data was collected (paradata) is crucial alongside metadata. Blockchain technology may assist with this.
  • SMART goals are essential for data initiatives: Defining specific, measurable, achievable, relevant, and time-bound objectives helps track progress in building a data-first culture.
  • Data governance is key to overcoming data silos: Establishing guidelines and educating employees on the benefits of data sharing are crucial.
  • BI gathers data from internal and external sources: This provides a holistic view for decision-making.
  • Executive sponsorship requires formal responsibilities and time commitment: Clearly defining expectations ensures the sponsor's effective involvement.
  • Microsoft Fabric aims to simplify data analytics: By integrating various tools onto a single platform, it intends to democratize data access and collaboration.
  • Data quality is a significant issue in data transformation: Companies need to address data bottlenecks early in their data journey.
  • Too much data can be as challenging as too little: Identifying the right data for decision-making is critical.
  • Data should represent real customers: Leaders need to ensure that data analysis doesn't lose sight of the human element. Programs like customer lunch-and-learns can help.
  • Informed intuition blends data and experience: It's not just a "gut feeling" but a logical conclusion derived from both analysis and past learnings.
  • Developing intuition requires experience and learning from failures: Creating a psychologically safe environment where mistakes are accepted is important.
  • Checking intuition with others can validate decisions and gain buy-in.

Support the show

Thank you for tuning in to "Analyze Happy: Crafting Your Data Estate"!
We hope you enjoyed today’s deep dive. If you found this episode helpful, don’t forget to subscribe for more insights on building modern data estates with Microsoft technologies like Fabric, Azure Databricks, and Power Platform.

Connect with Us:

  • Have a question or topic you’d like us to cover? Reach out on linkedin.com/company/dataqubi or [email protected]
  • Visit our website at www.dataqubi.com or episode resources, show notes, and additional tips on data governance, AI transformation, and best practices.

Stay Ahead:
Check out the Microsoft Learn portal for free training on Azure IoT, Fabric, and more, or explore the Azure Databricks community for the latest updates. Let’s keep crafting data solutions that fit your organization’s culture and tech landscape—happy analyzing until next time!

  continue reading

25 Episoden

Alle Folgen

×
 
Loading …

Willkommen auf Player FM!

Player FM scannt gerade das Web nach Podcasts mit hoher Qualität, die du genießen kannst. Es ist die beste Podcast-App und funktioniert auf Android, iPhone und im Web. Melde dich an, um Abos geräteübergreifend zu synchronisieren.

 

Kurzanleitung

Hören Sie sich diese Show an, während Sie die Gegend erkunden
Abspielen