Artwork

Player FM - Internet Radio Done Right
Checked 2M ago
Vor dreiunddreißig Wochen hinzugefügt
Inhalt bereitgestellt von AyeAyeAI. Alle Podcast-Inhalte, einschließlich Episoden, Grafiken und Podcast-Beschreibungen, werden direkt von AyeAyeAI oder seinem Podcast-Plattformpartner hochgeladen und bereitgestellt. Wenn Sie glauben, dass jemand Ihr urheberrechtlich geschütztes Werk ohne Ihre Erlaubnis nutzt, können Sie dem hier beschriebenen Verfahren folgen https://de.player.fm/legal.
Player FM - Podcast-App
Gehen Sie mit der App Player FM offline!
icon Daily Deals

The Aye Aye AI Podcast

Teilen
 

Manage series 3604085
Inhalt bereitgestellt von AyeAyeAI. Alle Podcast-Inhalte, einschließlich Episoden, Grafiken und Podcast-Beschreibungen, werden direkt von AyeAyeAI oder seinem Podcast-Plattformpartner hochgeladen und bereitgestellt. Wenn Sie glauben, dass jemand Ihr urheberrechtlich geschütztes Werk ohne Ihre Erlaubnis nutzt, können Sie dem hier beschriebenen Verfahren folgen https://de.player.fm/legal.
We interview researchers and developers who are creating new and innovative ideas in AI and Machine Learning. This bi-weekly podcast is looking for practical insights from the research world that tell us where AI and Machine learning are headed.
  continue reading

6 Episoden

Artwork

The Aye Aye AI Podcast

updated

iconTeilen
 
Manage series 3604085
Inhalt bereitgestellt von AyeAyeAI. Alle Podcast-Inhalte, einschließlich Episoden, Grafiken und Podcast-Beschreibungen, werden direkt von AyeAyeAI oder seinem Podcast-Plattformpartner hochgeladen und bereitgestellt. Wenn Sie glauben, dass jemand Ihr urheberrechtlich geschütztes Werk ohne Ihre Erlaubnis nutzt, können Sie dem hier beschriebenen Verfahren folgen https://de.player.fm/legal.
We interview researchers and developers who are creating new and innovative ideas in AI and Machine Learning. This bi-weekly podcast is looking for practical insights from the research world that tell us where AI and Machine learning are headed.
  continue reading

6 Episoden

All episodes

×
 
Can AI revolutionize climate research? In this episode, we sit down with Piotr Mirowski from Google DeepMind to explore groundbreaking research that slashes the amount of data needed for climate modeling—without losing the crucial details. The compression ratio they’ve achieved is astonishing, but the real challenge? Preserving rare, high-impact events like typhoons. Get it wrong, and the data becomes useless for predicting exactly the disasters we most need to understand. Listen to find out how AI is revolutionising the way huge climate science datasets are lowering one of the barriers to working in this field. Paper: [2407.11666] Neural Compression of Atmospheric States Guests: Piotr Mirowski, Senior Staff Research Scientist, Google DeepMind PhD in computer science in 2011 at New York University, with a thesis on “Time Series Modeling with Hidden Variables and Gradient-based Algorithms” supervised by Prof. Yann LeCun. Areas of academic focus include navigation-related research, on scaling up autonomous agents to real world environments, on weather and climate forecasting and now on human–centered AI, and the use of AI for artistic human and machine-based co-creation. Chapters: 00:00 Introduction 01:23 Aye Aye Fact of the Day 02:20 The Evolution of AI and Personal Experiences 08:31 AI over the last 15 years 10:50 Weather research and Climate Change 13:56 Understanding Data Volume: The Petabyte Challenge 18:21 Modelling Climate: The Complexities of Variables 20:11 The Cost of Climate Science: Data and Resources 26:16 Compression Techniques: Lossy vs Lossless 40:30 Neural Compression: A New Frontier in Data Handling 45:15 Understanding Compression Representations in AI 48:34 Challenges of Representing Spherical Data 56:21 Applying Compression Techniques to Other Data Sets 59:05 Lightning Round 1:03:51 Close out…
 
Episode 4 – To Err is AI This episode delves into the challenges users face in determining the trustworthiness of AI systems, especially when performance feedback is limited. The researchers describe a debugging intervention to cultivate a critical mindset in users, enabling them to evaluate AI advice and avoid both over-reliance and under-reliance, and we discuss the counter-intuitive ways that humans react to AI. Paper: To Err Is AI! Debugging as an Intervention to Facilitate Appropriate Reliance on AI Systems, arXiv:2409.14377 [cs.AI] Guests: Gaole He, PhD Student Ujwal Gadiraju, Assistant Professor Both at the Web Information Systems group of the Faculty of Electrical Engineering, Mathematics and Computer Science (EEMCS/EWI), Delft University of Technology Chapters: 00:00 Introduction 00:40 Aye Aye Fact of the Day 01:46 Understanding overreliance and under reliance on AI 02:26 The socio-technical dynamics of AI adoption 04:59 The role of familiarity and domain knowledge in AI use 07:18 The evolution of technology and it impact on trust 10:00 Challenges in AI transparency and trustworthiness 11:33 Background of the paper 12:56 The experiment: Over and under reliance 14:16 Human perception and AI accuracy 18:16 The Dunning-Kruger effect in AI interaction 20:53 Explaining AI: The double-edged sword 23:43 Building warranted trust in AI systems 31:59 Breaking down the Dunning-Kruger effect 39:18 Future research 41:49 Advice to AI product owners 45:45 Lightning Round – Can Transformers get us to AGI? 48:58 Lightning Round – Should we keep training LLM’s? 52:01 Lightning Round – Who should we follow? 54:38 Likelihood of an AI apocalypse? 58:10 Lightening Round – Recommendations for tools or techniques 1:00:48 Close out Music: "Fire" by crimson.…
 
In this episode we discuss the critical security flaw of indirect prompt injection in generative AI (GenAI) systems. Our guests explain how attackers can manipulate these systems by inserting malicious instructions into the data they access, such as emails and documents. This can lead to various issues, including disinformation, phishing attacks and denial of service. They also emphasize the importance of data hygiene, user training and technical safeguards to mitigate these risks, and they further discuss how the integration of large language models (LLMs) into organizational systems increases the attack surface. In summary RAG is vulnerable unless you take strong mitigating actions. Paper: Indirect Prompt Injection: Generative AI’s Greatest Security Flaw | Centre for Emerging Technology and Security Guests: Chris Jefferson , CEO AdvAI, https://www.linkedin.com/in/chris-jefferson-3b43291a/ Matt Sutton, https://www.linkedin.com/in/matthewsjsutton/ Chapters: 00:00 Introduction 01:48 Understanding RAG and it’s vulnerabilities 04:42 The significance of Indirect Prompt Injection 07:28 Attack vectors and real-world implications 10:04 Mitigation strategies for indirect prompt injection 12:45 The future of AI security and agentic processes 28:27 The risks and rewards of agentic design 33:50 Navigating phishing in AI systems 35:53 The role of public policy in AI safety 41:55 Automating risk analysis in AI 44:44 Future research directions in AI risks 48:08 Reinforcement learning agents and automation 48:53 AI in cybersecurity: attacking and defending 50:21 The ethics and risks of AI technology 52:51 The lightning Round 1:01:53 Outro Music: "Fire" by crimson.…
 
In this episode of the Aye Aye AI podcast, we delve into the revolutionary field of wetware computing. Dr. Fred Jordan, CEO of FinalSpark, shares his journey from traditional computer science to exploring the efficiency of organic neurons over silicon computers. Discover the parallels between this emerging field and the early days of machine learning, AI and quantum computing. Could wetware computing be the solution to the massive energy demands of data centers? Paper: Open and remotely accessible Neuroplatform for research in wetware computing Guest: Dr Fred Jordan – CEO FinalSpark, (LinkedIn) (Note: Co-authors Martin Kutter, Jean-Marc Comby and Flora Brozzi were unable to join us) Links discussed: Live - FinalSpark https://lloydwatts.com/images/wholeBrain_007.jpg Chapters: 0:13 Podcast Introduction 1:50 Summary of the Paper 3:44 Introducing Dr. Fred Jordan 4:25 Fred's Background and FinalSpark 7:11 Understanding Brain Organoids 10:20 Building the Team 12:13 Energy Efficiency in Research 13:43 Comparing Neural Systems 16:03 Exploring Training Mechanisms 17:29 The Nature of Brain Tissue 20:00 Accessing Research Data 26:57 Projects in Progress 28:43 The Evolution of Biocomputing 32:34 Future of Wetware Computing 37:59 The Ethics of Wetware 42:11 Hopes for the Future 43:38 Lightning Round Questions 47:37 Conclusion and Farewell Music credits : "Fire" by crimson.…
 
In this episode of Aye Aye AI , Christian and Arijit explore how large language models (LLMs) can actively shape user decisions in areas like investments and insurance. Joined by leading AI researchers Shirish and Ganesh, they discuss the groundbreaking use of multi-agent frameworks and how emotions impact persuasion. Learn how AI can influence, resist, and even adapt in real-time interactions, offering a glimpse into the future of AI-driven persuasion in business. Don't miss this deep dive into the evolving role of AI in decision-making Paper: https://arxiv.org/abs/2408.15879 Guests: Shirish Karande – Principal Scientist and Head of Media & Advertising Research Area at TCS, Shirish Karande | LinkedIn Ganesh Prasath Ramani – Associate Director – Generative AI at Cognizant, Ganesh Prasath Ramani | LinkedIn (Co-authors Santhosh V, Yash Bhatia were not able to join us on the podcast) Chapters 0:06 Introduction to Aye Aye AI Podcast 1:00 Exploring Persuasion Games with LLMs 2:35 Meet the Authors 3:31 Origins of the Research 8:27 Multi-Agent Framework Explained 10:00 User Resistance Strategies 11:18 The Role of Emotions in Persuasion 12:54 Evaluating LLMs vs. Human Responses 27:54 Real-World Applications Beyond E-commerce 33:59 Ethical Considerations in Persuasion Technology 43:45 Future Directions of Research 50:09 The Challenge of Grounding Personalities 50:42 Lightning Round: Quick Questions 57:15 Conclusion and Farewell Music credits : "Fire" by crimson.…
 
Loading …

Willkommen auf Player FM!

Player FM scannt gerade das Web nach Podcasts mit hoher Qualität, die du genießen kannst. Es ist die beste Podcast-App und funktioniert auf Android, iPhone und im Web. Melde dich an, um Abos geräteübergreifend zu synchronisieren.

 

icon Daily Deals
icon Daily Deals
icon Daily Deals

Kurzanleitung

Hören Sie sich diese Show an, während Sie die Gegend erkunden
Abspielen